【新人教版】八年级数学上册知识点总结.doc_第1页
【新人教版】八年级数学上册知识点总结.doc_第2页
【新人教版】八年级数学上册知识点总结.doc_第3页
【新人教版】八年级数学上册知识点总结.doc_第4页
【新人教版】八年级数学上册知识点总结.doc_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

博思特家教辅导中心【新人教版】八年级数学上册知识点总结第十一章 全等三角形一、知识框架: 二、知识概念:1.基本定义:全等形:能够完全重合的两个图形叫做全等形.全等三角形:能够完全重合的两个三角形叫做全等三角形.对应顶点:全等三角形中互相重合的顶点叫做对应顶点.对应边:全等三角形中互相重合的边叫做对应边.对应角:全等三角形中互相重合的角叫做对应角.2.基本性质:三角形的稳定性:三角形三边的长度确定了,这个三角形的形状、大小就全确定,这个性质叫做三角形的稳定性.全等三角形的性质:全等三角形的对应边相等,对应角相等.3.全等三角形的判定定理:边边边():三边对应相等的两个三角形全等.边角边():两边和它们的夹角对应相等的两个三角形全等.角边角():两角和它们的夹边对应相等的两个三角形全等.角角边():两角和其中一个角的对边对应相等的两个三角形全等.斜边、直角边():斜边和一条直角边对应相等的两个直角三角形全等.4.角平分线:画法:性质定理:角平分线上的点到角的两边的距离相等.性质定理的逆定理:角的内部到角的两边距离相等的点在角的平分线上.5.证明的基本方法:明确命题中的已知和求证.(包括隐含条件,如公共边、公共角、对顶角、角平分线、中线、高、等腰三角形等所隐含的边角关系)根据题意,画出图形,并用数字符号表示已知和求证.经过分析,找出由已知推出求证的途径,写出证明过程.第十二章 轴对称一、知识框架: 二、知识概念:1.基本概念:轴对称图形:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形.两个图形成轴对称:把一个图形沿某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称.线段的垂直平分线:经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线.等腰三角形:有两条边相等的三角形叫做等腰三角形.相等的两条边叫做腰,另一条边叫做底边,两腰所夹的角叫做顶角,底边与腰的夹角叫做底角.等边三角形:三条边都相等的三角形叫做等边三角形.2.基本性质:对称的性质:不管是轴对称图形还是两个图形关于某条直线对称,对称轴都是任何一对对应点所连线段的垂直平分线.对称的图形都全等.线段垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等.与一条线段两个端点距离相等的点在这条线段的垂直平分线上.关于坐标轴对称的点的坐标性质点关于轴对称的点的坐标为.点关于轴对称的点的坐标为.等腰三角形的性质:等腰三角形两腰相等.等腰三角形两底角相等(等边对等角).等腰三角形的顶角角平分线、底边上的中线,底边上的高相互重合.等腰三角形是轴对称图形,对称轴是三线合一(1条).等边三角形的性质:等边三角形三边都相等.等边三角形三个内角都相等,都等于60等边三角形每条边上都存在三线合一.等边三角形是轴对称图形,对称轴是三线合一(3条).3.基本判定:等腰三角形的判定:有两条边相等的三角形是等腰三角形.如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边).等边三角形的判定:三条边都相等的三角形是等边三角形.三个角都相等的三角形是等边三角形.有一个角是60的等腰三角形是等边三角形.4.基本方法:做已知直线的垂线:做已知线段的垂直平分线:作对称轴:连接两个对应点,作所连线段的垂直平分线.作已知图形关于某直线的对称图形:在直线上做一点,使它到该直线同侧的两个已知点的距离之和最短.第13章 实数一、算术平方根1算术平方根:如果一个正数x的平方等于a,即x2=a,那么这个正数x叫做a的算术平方根,记作a。0的算术平方根为0;2平方根:如果一个数x的平方等于a,即x2=a,那么数x就叫做a的平方根(或二次方根)。3开平方:求一个数a的平方根的运算(与平方互为逆运算)4平方根性质:正数有2个平方根(一正一负),它们是互为相反数;负数没有平方根。二、立方根1立方根:如果一个数x的立方等于a,即x3=a,那么数x就叫做a的立方根(或三次方根)。2开立方:求一个数a的立方根的运算(与立方互为逆运算)。3立方根性质:正数的立方根是正数;负数的立方根是负数。0的立方根是0;三、实数1无理数:无限不循环小数。如:、2、32实数:有理数和无理数统称实数。实数都可以用数轴上的点表示。第十四章一次函数一、变量与函数1变量:在一个变化过程中,数值发生变化的量叫做变量。2常量:数值始终不变的量叫做常量。3函数:一般的,在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就说y是x的函数,x是自变量。Y的值叫函数值。4函数解析式:表示x与y的函数关系的式子,叫函数解析式。自变量的取值不能使函数解析式的分母为0。5函数的图像:一般的,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么在坐标平面内由这些点组成的图形,就是这个函数的图象。6描点法画函数图像的步骤:列表、描点、连线。表示函数的方法:列表法、解析式法、图像法。二、一次函数1正比例函数:一般地,形如y=kx(k为常数,且k0)的函数叫做正比例函数.其中k叫做比例系数。2正比例函数的图象与性质:(1)图象:正比例函数y=kx(k是常数,k0)的图象是经过原点的一条直线,我们称它为直线y=kx。(2)性质:当k0时,直线y=kx经过第三,一象限,从左向右上升,即随着x的增大y也增大;当k0时,直线y=kx+b从左向右上升,即随着x的增大y也增大;当k0时,直线y=kx+b从左向右下降,即随着x的增大y反而减小。5求函数解析式的方法:待定系数法(先设出函数解析式,再根据条件确定解析式中未知的系数,从而具体写出这个式子的方法。)三、用函数观点看方程(组)与不等式1一次函数与一元一次方程:解一元一次方程就是求一次函数的函数值为0时,自变量X的取值。相当于求直线与X轴的交点。2一次函数与二元一次方程:每个二元一次方程都对应一个一次函数,于是也对应一条直线。3一次函数与二元一次方程组:每个二元一次方程组都对应二个一次函数,于是也对应二条直线。解方程组相当于确定两条直线的坐标。 第十五章 整式的乘除与分解因式一、知识框架: 整式乘法整式除法因式分解乘法法则二、知识概念:1.基本运算:同底数幂的乘法:幂的乘方:积的乘方:2.整式的乘法:单项式单项式:系数系数,同字母同字母,不同字母为积的因式.单项式多项式:用单项式乘以多项式的每个项后相加.多项式多项式:用一个多项式每个项乘以另一个多项式每个项后相加.3.计算公式:平方差公式:完全平方公式:;4.整式的除法:同底数幂的除法:单项式单项式:系数系数,同字母同字母,不同字

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论