等高线模式:解决极大极小问题的另类策略.doc_第1页
等高线模式:解决极大极小问题的另类策略.doc_第2页
等高线模式:解决极大极小问题的另类策略.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

等高线模式:解决极大极小问题的另类策略最近在看Plya的数学与猜想,读到了一些很有意思的东西,在这里和大家分享。我们首先来看一道很火星的题目:A、B两点在已知直线的同侧,请在直线上找出一点C使得ACB最大。可能大家都知道这个该怎么做,但这个解法到底是怎么想到的呢?数学与猜想提到了这样一种看法: 首先,我们需要确定,这条直线上的确存在一点,使得这个角度达到最大。我们很容易观察到,这个动点往左移(可以一直移动到BA的延长线与直线的交点),这个角度会慢慢变小;同时,动点不断往右移时角度也会慢慢变小(在无穷远处角度为0)。可以想到,角度大小的变化可以用一个凸函数来表示,这段函数上一定存在一个最大点。现在任意在直线上取一点C,你怎么才能说明ACB是最大或者不是最大?一个比较直观的方法是,如果你取的C点不能使角度达到最大,那么这条直线上一定存在另一个点C,使得ACB=ACB。分析到这一步,问题终于有了眉目,因为有一个大家都很熟悉的东西恰好与角度相等有关同一段弧所对的圆周角总是相等。过点AB作一系列的圆,那么同一个圆周上的所有点对AB的张角都是一样大的。我们看到,这些蓝色的线条与直线的交点都是成对出现,换句话说ABC三点确定的圆与直线的另一个交点就是那个C。但有那么一个点非常例外:在这无穷多个圆中,有一个圆恰好与直线相切。这个切点只出现了一次,它就是角度大小的极大值。真正的数学家会从这个简单的题目里看到一些更深的思想。我们可以把这个图任意的扭曲,从而得到这样一个有趣的结论。假设我和MM在野外探险,地形是任意给定的,我们的行动路线也是任意给定的。现在我有一张非常精确的等高线地图,我把我们的路线画在地图上,那么整个旅途中所到达的最高点和最低点在地图上的什么位置?仔细思考等高线的定义,我们立即想到:路径穿过等高线的地方肯定不会是最高点或最低点,因为穿过一条等高线即表明你正在爬上爬下。因此,达到最高点或最低点的地方只能是等高线与我的路线相切的地方。这给我们一个启发:我们可以用这种模式来解决很多极大极小问题。我们把所有可能的结果的分布情况用等高线表示,而实际允许的初始条件则被限制在了一条路径上,那么最优解必然是这条路径与某条等高线的切点。用等高线模式来解释刚才的问题将变得非常简单:图中的蓝色线条就是角度大小的“等高线”,在直线上取得极值的时候,等高线恰与直线相切,其它情况下角度大小都在“变化进行时”。我们再来看三个有趣的例子。在第一个例子中我们将解释为什么点到直线的距离以垂线段最短,第二个例子则将探究为什么所有的圆内接n边形以正n边形最大。在第三个例子里我们将提到一个与椭圆有关的神奇性质。 上面这个图就是到定点距离大小的等高线图。我们可以立即看到,等高线就是一个个的同心圆。与已知直线相切的那个同心圆确定了直线到给定点距离最短的位置,而圆的半径与对应位置上的切线垂直,这就说明了点到直线的距离以垂线段最短。 下面我们考虑圆内接多边形的某个顶点X。这个顶点两旁的点分别是A和B。那么整个多边形被分成了两部分:三角形AXB,和剩下的那一大块多边形。如果我们只移动点X,这只会影响三角形AXB的面积,对剩下的部分没有影响。X在不同位置所得到的三角形面积不同,在图中我们用蓝色的等高线来表示这个面积值的分布情况。由于等底等高的三角形面积相同,因此我们的等高线是一系列互相平行的直线。点X只能在一段圆弧上取,当AXB达到最大时X必然落在圆弧与某条直线相切的地方,显然此时AX=BX。换句话说,只要圆内接多边形里有长度不等的邻边,那么这个多边形的面积一定可以变得更大。再换句话说,只有所有边都相等了,面积才可能达到最大。这就说明了,所有的圆内接n边形以正n边形最大。我相信你已经对这个方法非常熟悉了,因此最后这个例子我就不画图了。在第三个例子中,我们将考虑一个和光学有关的性质。给定一条直线和直线同侧的两点A、B,那么直线上一定有一点C使得AC+BC达到最小。这个点C是一个以A、B为焦点的椭圆形等高线与直线的切点。固定点A和点B,适当调整直线的位置,结论始终成立。还记得Fermat原理吗,光从一点到另一点总是沿着光程最短的路径来传播。仅考

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论