2013年高考理科数学北京卷word解析版.doc_第1页
2013年高考理科数学北京卷word解析版.doc_第2页
2013年高考理科数学北京卷word解析版.doc_第3页
2013年高考理科数学北京卷word解析版.doc_第4页
2013年高考理科数学北京卷word解析版.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2013年普通高等学校夏季招生全国统一考试数学理工农医类(北京卷)本试卷共5页,150分,考试时长120分钟,考生务必将答案答在答题卡上,在试卷上作答无效考试结束后,将本试卷和答题卡一并交回第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分在每小题列出的四个选项中,选出符合题目要求的一项1(2013北京,理1)已知集合A1,0,1,Bx|1x1,则AB()A0 B1,0C0,1 D1,0,1答案:B解析:1,0,1x|1x11,02(2013北京,理2)在复平面内,复数(2i)2对应的点位于()A第一象限 B第二象限C第三象限 D第四象限答案:D解析:(2i)234i,该复数对应的点位于第四象限,故选D.3(2013北京,理3)“”是“曲线ysin(2x)过坐标原点”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件答案:A解析:,ysin(2x)sin 2x,曲线过坐标原点,故充分性成立;ysin(2x)过原点,sin 0,k,kZ.故必要性不成立故选A.4(2013北京,理4)执行如图所示的程序框图,输出的S值为()A1 B C D答案:C解析:依次执行的循环为S1,i0;,i1;,i2.故选C.5(2013北京,理5)函数f(x)的图象向右平移1个单位长度,所得图象与曲线yex关于y轴对称,则f(x)()Aex1 Bex1Cex1 Dex1答案:D解析:依题意,f(x)向右平移1个单位之后得到的函数应为yex,于是f(x)相当于yex向左平移1个单位的结果,f(x)ex1,故选D.6(2013北京,理6)若双曲线的离心率为,则其渐近线方程为()Ay2x BC D答案:B解析:由离心率为,可知ca,ba.渐近线方程为,故选B.7(2013北京,理7)直线l过抛物线C:x24y的焦点且与y轴垂直,则l与C所围成的图形的面积等于()A B2 C D答案:C解析:由题意可知,l的方程为y1.如图,B点坐标为(2,1),所求面积S44,故选C.8(2013北京,理8)设关于x,y的不等式组表示的平面区域内存在点P(x0,y0),满足x02y02,求得m的取值范围是()A BC D答案:C解析:图中阴影部分表示可行域,要求可行域内包含yx1上的点,只需要可行域的边界点(m,m)在yx1下方,也就是mm1,即.故选C.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分9(2013北京,理9)在极坐标系中,点到直线sin 2的距离等于_答案:1解析:在极坐标系中,点对应直角坐标系中坐标为(,1),直线sin 2对应直角坐标系中的方程为y2,所以点到直线的距离为1.10(2013北京,理10)若等比数列an满足a2a420,a3a540,则公比q_;前n项和Sn_.答案:22n12解析:由题意知.由a2a4a2(1q2)a1q(1q2)20,a12.Sn2n12.11(2013北京,理11)如图,AB为圆O的直径,PA为圆O的切线,PB与圆O相交于D,若PA3,PDDB916,则PD_,AB_.答案:4解析:设PD9k,则DB16k(k0)由切割线定理可得,PA2PDPB,即329k25k,可得.PD,PB5.在RtAPB中,AB4.12(2013北京,理12)将序号分别为1,2,3,4,5的5张参观券全部分给4人,每人至少1张,如果分给同一人的2张参观券连号,那么不同的分法种数是_答案:96解析:连号有4种情况,从4人中挑一人得到连号参观券,其余可以全排列,则不同的分法有496(种)13(2013北京,理13)向量a,b,c在正方形网格中的位置如图所示,若cab(,R),则_.答案:4解析:可设aij,i,j为单位向量且ij,则b6i2j,ci3j.由cab(6)i(2)j,解得.14(2013北京,理14)如图,在棱长为2的正方体ABCDA1B1C1D1中,E为BC的中点,点P在线段D1E上,点P到直线CC1的距离的最小值为_答案:解析:过E点作EE1垂直底面A1B1C1D1,交B1C1于点E1,连接D1E1,过P点作PH垂直于底面A1B1C1D1,交D1E1于点H,P点到直线CC1的距离就是C1H,故当C1H垂直于D1E1时,P点到直线CC1距离最小,此时,在RtD1C1E1中,C1HD1E1,D1E1C1HC1D1C1E1,C1H.三、解答题共6小题,共50分解答应写出文字说明,演算步骤15(2013北京,理15)(本小题共13分)在ABC中,a3,B2A,(1)求cos A的值;(2)求c的值解:(1)因为a3,B2A,所以在ABC中,由正弦定理得.所以.故cos A.(2)由(1)知,cos A,所以sin A.又因为B2A,所以cos B2cos2A1.所以sin B.在ABC中,sin Csin(AB)sin Acos Bcos Asin B.所以c5.16(2013北京,理16)(本小题共13分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染某人随机选择3月1日至3月13日中的某一天到达该市,并停留2天(1)求此人到达当日空气重度污染的概率;(2)设X是此人停留期间空气质量优良的天数,求X的分布列与数学期望;(3)由图判断从哪天开始连续三天的空气质量指数方差最大?(结论不要求证明)解:设Ai表示事件“此人于3月i日到达该市”(i1,2,13)根据题意,P(Ai),且AiAj(ij)(1)设B为事件“此人到达当日空气重度污染”,则BA5A8.所以P(B)P(A5A8)P(A5)P(A8).(2)由题意可知,X的所有可能取值为0,1,2,且P(X1)P(A3A6A7A11)P(A3)P(A6)P(A7)P(A11),P(X2)P(A1A2A12A13)P(A1)P(A2)P(A12)P(A13),P(X0)1P(X1)P(X2).所以X的分布列为:X012P故X的期望EX012.(3)从3月5日开始连续三天的空气质量指数方差最大17(2013北京,理17)(本小题共14分)如图,在三棱柱ABCA1B1C1中,AA1C1C是边长为4的正方形平面ABC平面AA1C1C,AB3,BC5,(1)求证:AA1平面ABC;(2)求二面角A1BC1B1的余弦值;(3)证明:在线段BC1上存在点D,使得ADA1B,并求的值解:(1)因为AA1C1C为正方形,所以AA1AC.因为平面ABC平面AA1C1C,且AA1垂直于这两个平面的交线AC,所以AA1平面ABC.(2)由(1)知AA1AC,AA1AB.由题知AB3,BC5,AC4,所以ABAC.如图,以A为原点建立空间直角坐标系Axyz,则B(0,3,0),A1(0,0,4),B1(0,3,4),C1(4,0,4)设平面A1BC1的法向量为n(x,y,z),则即令z3,则x0,y4,所以n(0,4,3)同理可得,平面B1BC1的法向量为m(3,4,0)所以cosn,m.由题知二面角A1BC1B1为锐角,所以二面角A1BC1B1的余弦值为.(3)设D(x,y,z)是直线BC1上一点,且,所以(x,y3,z)(4,3,4)解得x4,y33,z4.所以(4,33,4)由0,即9250,解得.因为0,1,所以在线段BC1上存在点D,使得ADA1B.此时,.18(2013北京,理18)(本小题共13分)设L为曲线C:在点(1,0)处的切线(1)求L的方程;(2)证明:除切点(1,0)之外,曲线C在直线L的下方解:(1)设,则.所以f(1)1.所以L的方程为yx1.(2)令g(x)x1f(x),则除切点之外,曲线C在直线L的下方等价于g(x)0(x0,x1)g(x)满足g(1)0,且g(x)1f(x).当0x1时,x210,ln x0,所以g(x)0,故g(x)单调递减;当x1时,x210,ln x0,所以g(x)0,故g(x)单调递增所以,g(x)g(1)0(x0,x1)所以除切点之外,曲线C在直线L的下方19(2013北京,理19)(本小题共14分)已知A,B,C是椭圆W:y21上的三个点,O是坐标原点(1)当点B是W的右顶点,且四边形OABC为菱形时,求此菱形的面积;(2)当点B不是W的顶点时,判断四边形OABC是否可能为菱形,并说明理由解:(1)椭圆W:y21的右顶点B的坐标为(2,0)因为四边形OABC为菱形,所以AC与OB相互垂直平分所以可设A(1,m),代入椭圆方程得m21,即m.所以菱形OABC的面积是|OB|AC|22|m|.(2)假设四边形OABC为菱形因为点B不是W的顶点,且直线AC不过原点,所以可设AC的方程为ykxm(k0,m0)由消y并整理得(14k2)x28kmx4m240.设A(x1,y1),C(x2,y2),则,.所以AC的中点为M.因为M为AC和OB的交点,所以直线OB的斜率为.因为k1,所以AC与OB不垂直所以OABC不是菱形,与假设矛盾所以当点B不是W的顶点时,四边形OABC不可能是菱形20(2013北京,理20)(本小题共13分)已知an是由非负整数组成的无穷数列,该数列前n项的最大值记为An,第n项之后各项an1,an2,的最小值记为Bn,dnAnBn.(1)若an为2,1,4,3,2,1,4,3,是一个周期为4的数列(即对任意nN*,an4an),写出d1,d2,d3,d4的值;(2)设d是非负整数,证明:dnd(n1,2,3,)的充分必要条件为an是公差为d的等差数列;(3)证明:若a12,dn1(n1,2,3,),则an的项只能是1或者2,且有无穷多项为1.解:(1)d1d21,d3d43.(2)(充分性)因为an是公差为d的等差数列,且d0,所以a1a2an.因此Anan,Bnan1,dnanan1d(n1,2,3,)(必要性)因为dnd0(n1,2,3,),所以AnBndnBn.又因为anAn,an1Bn,所以anan1.于是,Anan,Bnan1,因此an1anBnAndnd,即an是公差为d的等差数列(3)因为a12,d11,所以A1a12,B1A1d11.故对任意n1,a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论