人教A版高中数学选修2-3导学案.doc_第1页
人教A版高中数学选修2-3导学案.doc_第2页
人教A版高中数学选修2-3导学案.doc_第3页
人教A版高中数学选修2-3导学案.doc_第4页
人教A版高中数学选修2-3导学案.doc_第5页
已阅读5页,还剩56页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

、 1.1. 两个原理课前预习学案一、预习目标准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。二、预习内容分类计数原理:完成一件事, 有n类方式, 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.分步计数原理:完成一件事,需要分成n个 ,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有 N= 种不同的方法。课内探究学案一、 学习目标二、 准确理解两个原理,弄清它们的区别;会用两个原理解决一些简单问题。学习重难点:教学重点:两个原理的理解与应用教学难点:学生对事件的把握二、学习过程情境设计1、从学校南大门到图艺中心有多少种不同的走法?2、从学校南大门经图艺中心到食堂有多少种不同的走法?(请画分析图)3、课件中提供的生活实例。新知分类计数原理:完成一件事, 有n类 , 在第一类方式,中有m1种不同的方法,在第二类方式,中有m2种不同的方法,在第n类方式,中有mn种不同的方法. 那么完成这件事共有 N= 种不同的方法.分步计数原理:完成一件事,需要分成n个 ,做第1步有m1种不同的方法,做第2步有m2种不同的方法,做第n步有mn种不同的方法,那么完成这件事共有 N= n种不同的方法。巩固原理例1、某班共有男生28名,女生20名,从该班选出学生代表参加校学代会。(1)若学校分配给该班1名代表,有多少不同的选法?(2)若学校分配给该班2名代表,且男、女代表各一名,有多少种不同的选法?解: 练习1、乘积展开后共有多少项?例2(1)在下图(1)的电路中,只合上一只开关以接通电路,有多少种不同的方法?(2)在下图(2)的电路中,合上两只开关以接通电路,有多少种不同的方法? (1)(2)例3、为了确保电子信箱的安全,在注册时通常要设置电子信箱密码.在网站设置的信箱中,(1)密码为4位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个?(2)密码为4位,每位是0到9这10个数字中的一个,或是从A到Z这26个英文字母中的1个,这样的密码共有多少个?(3)密码为46位,每位均为0到9这10个数字中的一个数字,这样的 密码共有多少个?解:(1)(2)(4)(3)例4、用4种不同颜色给下图示的地图上色, 要求相邻两块涂不同的颜色, 共有多少种不同的涂法?解:三、反思总结 1. 分类计数与分步计数原理是两个最基本,也是最重要的原理,是解答排列、组合问题,尤其是较复杂的排列、组合问题的基础.2.辨别运用分类计数原理还是分步计数原理的关键是“分类”还是“分步”,也就是说“分类”时,各类办法中的每一种方法都是独立的,都能直接完成这件事,而“分步”时,各步中的方法是相关的,缺一不可,当且仅当做完个步骤时,才能完成这件事.四、当堂检测课本P9:练习1-5课后练习与提高一、选择题 1将5封信投入3个邮筒,不同的投法共有( )A 种B 种C 种D 种2将4个不同的小球放入3个不同的盒子,其中每个盒子都不空的放法共有( )A种B 种C18种D36种3已知集合 , ,从两个集合中各取一个元素作为点的坐标,则这样的坐标在直角坐标系中可表示第一、二象限内不同的点的个数是( )A18B10C16D144用1,2,3,4四个数字在任取数(不重复取)作和,则取出这些数的不同的和共有( )A8个B9个C10个D5个二、填空题1由数字2,3,4,5可组成_个三位数,_个四位数,_个五位数用1,2,3,9九个数字,可组成_个四位数,_个六位数商店里有15种上衣,18种裤子,某人要买一件上衣或一条裤子,共有_种不同的选法要买上衣、裤子各一件,共有_种不同的选法大小不等的两个正方体玩具,分别在各面上标有数字1,2,3,4,5,6,则向上的面标着的两个数字之积不小于20的情形有_种三、解答题1从1,2,3,4,7,9中任取不相同的两个数,分别作为对数的底数和真数,能得到多少个不同的对数值? 2在连结正八边形的三个顶点组成的三角形中,与正八边形有公共边的有多少个? 1.2.1 排列的概念课前预习学案一、预习目标预习排列的定义和排列数公式,了解排列数公式的推导过程,能应用排列数公式计算、化简、求值。二、预习内容1一般的, 叫做从n个不同元素中取出m个元素的一个排列。2 叫做从n个不同元素中取出m个元素的排列数,用符号 表示。3排列数公式A ;4全排列: 。A 。课内探究学案一、学习目标1.了解排列、排列数的定义;掌握排列数公式及推导方法;2. 能用“树形图”写出一个排列问题的所有的排列,并能运用排列数公式进行计算。3.通过实例分析过程体验数学知识的形成和发展,总结数学规律,培养学习兴趣。 学习重难点:教学重点:排列的定义、排列数公式及其应用教学难点:排列数公式的推导二、学习过程合作探究一: 排列的定义问题(1)从红球、黄球、白球三个小球中任取两个,分别放入甲、乙盒子里 (2)从10名学生中选2名学生做正副班长;(3)从10名学生中选2名学生干部;上述问题中哪个是排列问题?为什么?概念形成1、元素: 。2、排列:从个不同元素中,任取()个元素(这里的被取元素各不相同)按照一定的 排成一列,叫做从个不同元素中取出个元素的一个排列。说明:(1)排列的定义包括两个方面: 按一定的 排列(与位置有关) (2)两个排列相同的条件:元素 ,元素的排列 也相同合作探究二 排列数的定义及公式3、排列数:从个不同元素中,任取()个元素的所有排列的个数叫做从个元素中取出元素的排列数,用符号 表示议一议:“排列”和“排列数”有什么区别和联系? 4、排列数公式推导探究:从n个不同元素中取出2个元素的排列数是多少?呢?呢? ()说明:公式特征:(1)第一个因数是,后面每一个因数比它前面一个少1,最后一个 因数是,共有个因数; (2)即学即练:1.计算 (1); (2) ;(3)2.已知,那么 3且则用排列数符号表示为( ) 例1 计算从这三个元素中,取出3个元素的排列数,并写出所有的排列。解析:(1)利用好树状图,确保不重不漏;(2)注意最后列举。解:变式训练:由数字1,2,3,4可以组成多少个没有重复数字的三位数?并写出所有的排列。 5 、全排列:n个不同元素全部取出的一个排列,叫做n个不同元素的 。此时在排列数公式中, m = n全排列数:(叫做n的阶乘). 想一想:由前面联系中( 2 ) ( 3 )的结果我们看到,和有怎样的关系?那么,这个结果有没有一般性呢?排列数公式的另一种形式:另外,我们规定 0! =1 .想一想:排列数公式的两种不同形式,在应用中应该怎样选择?例2求证: 解析:计算时,既要考虑排列数公式,又要考虑各排列数之间的关系;先化简,以减少运算量。解:点评:(1)熟记两个公式;(2)掌握两个公式的用途;(3)注意公式的逆用。思考:你能用计数原理直接解释例2中的等式吗?(提示:可就所取的m个元素分类,分含某个元素a和不含元素a两类) 变式训练:已知,求的值。三、反思总结 1、 是排列的特征;2、两个排列数公式的用途:乘积形式多用于 ,阶乘形式多用于 或 。四、当堂检测1若,则 ( ) 2若,则的值为 ( ) 3 已知,那么 ;4

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论