组合图形的面积求法.doc_第1页
组合图形的面积求法.doc_第2页
组合图形的面积求法.doc_第3页
组合图形的面积求法.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

组合图形的面积求法知识点归纳:1、 组合图形面积求法中的“转化”思想 组合图形的面积的计算是建立在学生剪、拼、摆的操作活动上,通过操作,引导学生去探究所研究的图形与转化后的图形之间有什么联系,从而找到面积的计算方法,渗透“转化”的思想方法。把求较复杂的组合图形的面积转化为求几个简单的图形的面积。2、 计算一般组合图形面积的思路: 运用“转化”思想,可以有多种途径和方法将组合图形转化为简单的图形,然后求出面积。在这个过程中要对这个图形进行认真观察、思考。例1:把下列组合图形进行转化:(用不只一种转化)8146 3、 计算阴影部分的面积思路: 对阴影部分面积进行观察,可以利用直接或间接的方法求阴影部分的面积。直接法:把阴影部分按照组合图形的面积的求法转化成几个简单的图形后求出面积。间接法:找出阴影部分所在的简单的图形,然后这个图形的面积减去除阴影外的部分的面积,就可以得出阴影部分的面积。例2:下图两个完全相等的长方形中,阴影部分的面积甲( )乙 A B C = D 无法判断例3:计算下列组合图形的面积 例4:(1)如图,六个边长为2厘米的正方形组成一个长方形,阴影部分面积是( )平方厘米。(2)如图,大正方形的边长为4cm,阴影部分面积为14cm,小正方形边长为( )cm。例5:如图5,大正方形边长18cm,小正方形边长2cm,求乙与丁面积之和。例6:如图6,围一个篱笆,如图6,一面靠墙,AB长8米,篱笆长32米。又知CD长12米,求所围图形面积。例7:如图,已知大正方形的边长是12厘米,小正方形的边长是8厘米,求阴影部分的面积。 例8:一条人行道长20米,宽1.5米。如果要在这条人行道上铺上一种上底10厘米、下底20厘米、高5厘米的梯形砖,需要多少块这样的砖?例9:有一块平行四边形菜地(如图),DE=EF=FC,GB=1/3BD,三角形GEF种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论