电子效应及位阻效应在有机化学中的应用.doc_第1页
电子效应及位阻效应在有机化学中的应用.doc_第2页
电子效应及位阻效应在有机化学中的应用.doc_第3页
电子效应及位阻效应在有机化学中的应用.doc_第4页
电子效应及位阻效应在有机化学中的应用.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电子效应及位阻效应在有机化学中的应用刘晓(西北大学化学系06级材料化学专业 西安 710069)摘要:电子效应及位阻效应贯穿着整个有机化学的学习,故其在有机化学中有着广泛的应用。但由于所掌握的知识有限,我仅将所学的具有代表性的知识进行整理小结,为以后的学习奠定基础。关键词:电子效应 诱导效应 共轭效应 位阻效应一引言 在有机化学的学习中我们应该都碰到了这样或那样的问题,有些问题的答案需要我们死记硬背,但有些问题的解答则有章可循.比如亲电加成的方向性,芳香族化合物的酸性,消去反应的方向性等,只要我们掌握了电子效应和位阻效应在这些反应中所起的作用,那么这类问题便迎刃而解了.那么电子效应,位阻效应到底在有机化学中扮演着一个怎样的角色呢?二电子效应与位阻效应的简介电子效应是指电子密度分布的改变对物质性质的影响。电子效应可以根据作用方式分为诱导效应和共轭效应两种类型。诱导效应1.诱导效应的定义一般以氢为比较标准,如果电子偏向取代基,这个取代基是吸电子的,具有吸电子的诱导效应,用I(Inductive effect)表示; 2.诱导效应的特点诱导效应是沿键传递的,离吸(或斥)电子基团越远,效应越弱。大致隔三个单键后,诱导效应就很弱,可忽略不计了。例如, 其中表示微小,表示更微小,依此类推。诱导效应有叠加性,当两个基团都能对某一键产生诱导效应时,这一键所受的诱导效应是这几个基团诱导效应的总和。方向相同时叠加,方向相反时互减。诱导效应只改变键的电子云密度分布,不改变键的本质。无论所受诱导效应的大小和方向如何,键仍是键,键仍是键。3.诱导效应的强弱,取决于基团吸电子能力或斥电子能力的大小。下列是一些能产生诱导效应的基团吸电子基团:带正电荷的基团,如:、;卤素原子,如:;带氧原子或氮原子的基团,如:;芳香族或不饱和烃基,如:斥电子基团:带负电荷的基团,如:;饱和脂肪族烃基,如:共轭效应1.共轭效应的定义体系中各个键都在同一个平面上,参加共轭的P轨道互相平行而发生重叠,形成分子轨道。由于分子内原子之间的相互影响,引起电子云密度平均化,体系能量降低的现象,又称电子离域效应。2.共轭效应形成条件形成共轭体系的原子必须在同一个平面上;必须有若干可以实现平行重叠的P轨道,且要有一定数量供成键用的电子。3.共轭效应的特点由于离域的电子可以在整个体系内流动,所以当共轭体系一端的电子密度受到影响时,整个共轭体系每一个原子的电子云密度都受到影响,共轭体系有多长,影响的范围就多大,不受距离的限制,也不是越远影响越小。例如: + - + - + -电子密度平均化、键长平均化、体系能量降低、稳定性增大(注:超共轭效应:当CH键与键(或P轨道)处于共轭位置时,也会产生电子的离域现象,这种CH键-电子的离域现象叫做超共轭效应。超共轭效应的大小,与p轨道或轨道相邻碳上的CH键多少有关,CH键愈多,超共轭效应愈大。但超共轭效应比共轭效应弱。)位阻效应又称立体效应。主要是指分子中某些原子或基团彼此接近而引起的空间阻碍和偏离正常键角而引起的分子内的张力。二.电子效应及位阻效应在有机化学中的应用1.马尔科夫尼科夫规则(以丙烯为例)诱导效应解释:甲基碳原子:杂化,双键碳原子:杂化; 电负性 3.芳烃的定位效应与活化规律从大量的实验事实中可以归纳出:苯环上新导入的取代基的位置与亲电试剂无关,至于苯环上原有取代基的性质有关,受苯环原有取代基的控制,这种效应称为定位效应。并将取代基大致分为两类:A:邻、对位定位基,使新基团主要进入邻、对位。常见的有: -O-、-N(CH3)2、-NH2、-OH、-OCH3、-NHCOR、-OCOR、-CH3(R)、-C6H5、-CH=CH2、-F、-Cl、-Br、-I等。(一般使苯环活化,反应易于进行,卤素例外)B:间位定位基,使新基团主要进入间位。常见的有:+NR3、-NO2、-CF3、-CCl3、-CN、-SO3H、-CHO、-COR、-COOH、-COOR、-CONH2等(均使苯环钝化)定位效应及活化规律的解释例:-+NR3、-CCl3 以上两个取代基虽然没有共轭效应,但吸电子的诱导效应很大,使苯环上的电子云密度降低,不利于亲电试剂反应,特别是邻、对位降得更低,故只能在间位上反应。例CH3诱导效应:SP3 M S 主要产物 次要产物按说Nu可以从羰基的两面进攻,但是格拉穆(Cram)通过研究认为Nu是从羰基和最小的基团中间进攻,得到的产物比例最高。7.化合物的手性手性是指实物和镜象不能叠合的一种性质。 实物和镜象关系这种具有手性,实物和镜象不能叠合而引起的异构就是对映异构。分子与其镜象是否能互相叠合决定于分子本身的对称性,即分子的手性与分子的对称性有关。对称元素: 对称面、对称中心、对称轴。例:两个苯环可绕单键旋转,故可以在旋转的某一状态下具有对称面,所以其无手性。两个苯环由于空间位阻效应太大而不能绕单键任意旋转,故既无对称中心又无对称面,所以其有手性。由此可以得出:若在同一苯环上连的两个大基团不同,整个分子既无对称中心又无对称面,具有手性;同理,当一个苯环上连有两个体积较大的取代基相同时,虽然两个苯环不能自由旋转,但分子中有一个对称面,就无手性,无旋光性。8亲核取代反应活性对SN2反应历程例:卤代物碱性条件下按SN2历程醇解反应的相对反应速率:150 1 0.28 0.030 0.00000421.电子效应的影响:烷基越多,供电子效应越大,C上电子云密度越大,不利于亲核试剂进攻,过渡态难以形成。2.位阻效应的影响:烷基越多,拥挤程度越大,立体阻碍也将加大,进攻试剂难以接近中心碳原子;即使是位上也有影响。降低了过渡态的稳定性,使反应速率明显下降。其中位阻效应影响占主导地位。对SN1反应历程:(对SN1历程来说,决定反应速率的一步是碳正离子的生成。)例:卤代物碱性条件下按SN1历程水解反应的相对反应速率: 1 1 32 1071.电子效应的影响:烷基越多,供电子效应越大,正碳离子越稳定,越容易生成。2.位阻效应:烷基越多,原来的拥挤程度越大,形成碳正离子后,空间位阻减小,正碳离子更稳定,越容易生成。其中电子效应影响占主导地位。9.亲核加成反应活性以HCN对醛、酮的加成为例讨论:无碱催化时,3-4小时仅反应一半;加一滴碱(KOH),两分钟就完成反应;加酸反应速度减慢;加入大量的酸几乎不反应;反应历程: 不同的亲核试剂与醛、酮的反应速率不同,有的很小,有的很大可见各种因素对亲核加成反应速率影响很大。1.位阻效应的影响: 醛、酮上的烃基体积增大、亲核试剂体积增大;平衡常数减小,反应速率减小。主要原因是增加了相互的排斥作用,使亲核试剂难以接近羰基碳。2.电子效应的影响: R、R/吸电子性增强,平衡常数增大;反应速率加快;R、R/供电子性增强,平衡常数减小;反应速率减慢。主要原因是吸电子基使羰基碳上更显正电性,故更容易与亲核试剂发生亲核加成反应。三.小结由此可见,了解电子效应及位阻效应的原理后,电子效应及位阻效应在应用时其实很简单,并且在有机化学中有着广泛的用途。掌握电子效应及位阻效应不仅对有机

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论