




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
攀枝花学院学生课程设计(论文)题 目: 传染病模型 学生姓名: 普祥斌 学 号: 201210802012 所在院(系): 数学与计算机学院 专 业: 信息与计算科学 班 级: 12信本1班 指 导 教 师: 马亮亮 2014年 12 月 8 日攀枝花学院教务处制攀枝花学院数学建模课程设计攀枝花学院本科学生课程设计任务书题目传染病模型1、课程设计的目的通过本课程设计使学生能够较全面的掌握面向对象程序设计的有关概念和开发方法,以便能较全面地理解、掌握和综合运用所学的知识,提高自身的编程能力。2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等)编写一个时钟(模拟方式)程序,要求: (1)模拟机械表以图形方式显示时间。 (2)能显示时针、分针、秒针。3、主要参考文献1朱福喜.Java语言程序设计(第二版).科学出版社2陈国君等.Java程序设计基础(第二版).清华大学出版社3 Deitel.Java大学基础教程(第六版).电子工业出版社 4 MaryCampione.Java语言导学(第四版).机械工业出版社5 Y.Daniel Liang.Java语言程序设计基础篇(第六版). 机械工业出版社6 Kathy Sierra.Head First Java(第二版).东南大学出版社4、课程设计工作进度计划序号时间(天)内容安排备注11分析设计准备周一22编程调试阶段周二至周三31编写课程设计报告周四41考核周五总计5(天)指导教师(签字)日期年 月 日教研室意见:年 月 日学生(签字): 接受任务时间: 2014 年 6 月 25 日注:任务书由指导教师填写。课程设计(论文)指导教师成绩评定表题目名称时钟(模拟方式)评分项目分值得分评价内涵工作表现20%01学习态度6遵守各项纪律,工作刻苦努力,具有良好的科学工作态度。02科学实践、调研7通过实验、试验、查阅文献、深入生产实践等渠道获取与课程设计有关的材料。03课题工作量7按期圆满完成规定的任务,工作量饱满。能力水平35%04综合运用知识的能力10能运用所学知识和技能去发现与解决实际问题,能正确处理实验数据,能对课题进行理论分析,得出有价值的结论。05应用文献的能力5能独立查阅相关文献和从事其他调研;能提出并较好地论述课题的实施方案;有收集、加工各种信息及获取新知识的能力。06设计(实验)能力,方案的设计能力5能正确设计实验方案,独立进行装置安装、调试、操作等实验工作,数据正确、可靠;研究思路清晰、完整。07计算及计算机应用能力5具有较强的数据运算与处理能力;能运用计算机进行资料搜集、加工、处理和辅助设计等。08对计算或实验结果的分析能力(综合分析能力、技术经济分析能力)10具有较强的数据收集、分析、处理、综合的能力。成果质量45%09插图(或图纸)质量、篇幅、设计(论文)规范化程度5符合本专业相关规范或规定要求;规范化符合本文件第五条要求。10设计说明书(论文)质量30综述简练完整,有见解;立论正确,论述充分,结论严谨合理;实验正确,分析处理科学。11创新10对前人工作有改进或突破,或有独特见解。成绩指导教师评语指导教师签名: 年月日摘要本次实验是让同学们进一步了解、巩固、加强微分方程模型的建模、求解能力;学习掌握用MATLAB进行二维和三维基本图形绘制。因为MATLAB具有很强的图形处理功能和丰富的图形表现方法。它提供了大量的二维、三维图形函数,使得数学计算结果可以方便地、多样性地实现可视化,这是其它语言所不能比拟的。MATLAB不仅能绘制几乎所有的标准图形,而且其表现形式也是丰富多样的。MATLAB不仅具有高层绘图能力,而且还具有底层绘图能力句柄绘图方法。在面向对象的图形设计基础上,使得用户可以用来开发各专业的专用图形。help graph2d可得到所有画二维、三维图形的命令。 描述传染病的传播过程,分析受感染人数的变化规律,预报传染病高潮到来的时刻,预防传染病蔓延的手段,按照传播过程的一般规律,用机理分析方法建立模型。攀枝花学院Java课程设计目 录摘 要11 前言11.1 课程设计目的11.2 课程设计的实验环境11.3 实现功能12 相关技术分析22.1 实现窗口功能22.1.1 JFrame的常用方法及位置22.1.2 awt的应用22.2 绘出过程用到的图形22.2.1 JFramede的图形22.2.2 总设计流程32.2.3 运行流程43 设计与实现53.1 实现窗口的书写53.2 进行圆和时针、分针、秒针的的设计63.3 实现结果7结 论8参 考 文 献9攀枝花学院Java课程设计报告1问题重述问题: 有一种传染病(如SARS、甲型H1N1)正在流行。现在希望建立适当的数学模型,利用已经掌握的一些数据资料对该传染病进行有效地研究,以期对其传播蔓延进行必要的控制,减少人民生命财产的损失。考虑如下的几个问题,建立适当的数学模型,并进行一定的比较分析和评价展望。 1、 不考虑环境的限制,设单位时间内感染人数的增长率是常数,建立模型求t时刻的感染人数。 2、 假设环境条件下所允许的最大可感染人数。单位时间内感染人数的增长率是感染人数的线性函数,最大感染时的增长率为零。建立模型求t时刻的感染人数。 3、 假设总人口可分为传染病患者和易感染者,易感染者因与患病者接触而得病,而患病者会因治愈而减少且对该传染病具有很强的免疫功能,建立模型分析t时刻患病者与易感染者的关系,并对传染情况(如流行趋势,是否最终消灭)进行预测。 2 问题分析 1、 这是一个涉及传染病传播情况的实际问题,其中涉及传染病感染人数随时间的变化情况及一些初始资料,可通过建立相应的微分方程模型加以解决。 2、 问题表述中已给出了各子问题的一些相应的假设。 3、 在实际中,感染人数是离散变量,不具有连续可微性,不利于建立微分方程模型。但由于短时间内改变的是少数人口,这种变化与整体人口相比是微小的。因此,为了利用数学工具建立微分方程模型,我们还需要一个基本假设:感染人数是时间的连续可微函数。 关键字: 社会、经济、文化、风俗习惯等因素 3 模型准备研究者通过对某地区某种传染病传播情况的观察,积累一定的数据,例如,记录一段时期内每天传染病人,易受感染者以及免疫者(或感染后痊愈者)的人数等等,也就是说,按要求统计必要的数据,目的是建立传染病传播的数学模型,以了解传染病人的人数变化的趋势,使有关医疗卫生部门能及时采取措施,将传播病加以有效的防治。4 模型假设由于人体的疾病难以控制和变化莫测,医学中的数学模型也是较为复杂的。在研究传染病传播问题时,人们发现传染病传播所涉及的因素很多,例如,传染病人的多少,易受感染者的多少,免疫者(或感染后痊愈者)的多少等,因此,必须根据实际研究对象的特征和建立模型的目的,较确切地去辨别问题的主要方面和次要方面,抓住主要因素,暂不考虑次要因素,将问题理想化、简单化。不同的简化和假设,会得到不同的模型。假设做得不合理或过分简单,会导致模型的失败或部分失败,于是应该加以修正;假设做得过于详细,试图把复杂的实际现象的各个因素都考虑进去,将难于发现规律和建立模型。这里我们只考虑上述三种人数:Sk,Hk和Ik的变化情况,对人口的迁入和迁出,出生和死亡等因素暂不考虑。5 模型建立建立一个与实际数据比较吻合的关于Sk,Hk和Ik的递推关系式。通过对观察数据的分析,发现每天有1%的易受感染者得病,而病人的患病期为5天,所以每天又有1/5的传染病人痊愈,由此建立了递推关系式(1),(2)和(3)以描述易受感染者,传染病人和免疫者(或感染后痊愈者)的人数之间的内在联系。设Sk表示在开始观察传染病之后第k天易受感染者的人数,Hk表示在开始观察后第k天传染病人的人数,Ik表示在开始观察后第k天免疫者(或感染后痊愈者)的人数,那么Sk+1=Sk-0.01Sk(1)Hk+1=Hk-0.2Hk0.01Sk(2)Ik+1=Ik+0.2Hk(3)其中(1)式表示从第k天到第k1天有1的易受感染者得病而离开了易受感染者的人群;(2)式表示在第k+1天的传染病人的人数是第k天的传染病人的人数减去痊愈的人数0.2Hk(假设该病的患病期为5天,那么每天将有1/5(=0.2)的人数痊愈),加上新得病的人数0.01 Sk.(3)式表示在第k1天免疫者的人数是第k天免疫者的人数加上第k天后病人痊愈的人数。6 模型求解建立数学模型后,实际问题已归结为相应的数学问题。接着,需要求解数学问题,解出结果。在本题中,利用数学模式(4)式,通过直接计算,就能得到表30-1所列的结果。如果借助于计算机,我们还能得到更多的数据。本题的模型求解过程特别简单。对于有些问题,有时需要用到许多数学方法,甚至现代数学的一些方法;有时需要借助于计算机,利用算法语言,编出计算机程序,做出计算机软件等帮助求解。将(1),(2)和(3)式化简得如果已知S0,H0,I0的值,利用上式可以求得S1,H1,I1的值,将这组值再代入上式,又可求得S2,H2,I2的值,这样做下去,我们可以逐个地,递推地求出各组Sk,Hk,Ik的值。因此,我们把Sk+1,Hk1,Ik+1和Sk,Hk,Ik之间的关系式叫做递推关系式。现在假设开始观察时易受感染者,传染病人和免疫者的人数分别为将上述数据(5)代入(4)式右边得利用递推关系式(4)反复计算得表30-1。在建立上述数学模型的过程中,如果还要考虑该地区人员的迁入和迁出,人口的出生和死亡所引起的总人数的变化等因素,那么传染病传播的数学模型变得非常复杂。所以必须舍去次要因素,抓住主要因素,把问题简化,建立相应的数学模型。如果将由该数学模型计算的结果与实际比较后,与传染病传播的情况大致吻合,那么我们就可以利用该模型对得病人数进行预测和估计。例如,可以预测若干天后传染病人的人数等等,便于有关的医疗卫生部门作出相应的决策。在上述模型中,易受感染者每天的发病率是1,它只与易受感染者的人数Sk有关。对于有些传染病,情形更为复杂,它不仅与易受感染者的人数有关,也与传染病人的人数Hk有关,因为传染病人的人数越多,传染病的发病率也就越高。这样,就必须将由(1),(2)和(3)式所给出的模型加以修改。这里,我们假设该地区人口总数为N,是一个常数。于是,Sk=N-(HkIk)(7)其中Ik为在开始观察后第k天免疫者(或感染后痊愈者)的人数。设传染病人每天的痊愈率为,则Ik+1=Ik+Hk(8)最后,假设每天发病人数与易受感染者的人数Sk和传染病人的人数Hk均成正比,且其比例因子为,那么Hk+1=Hk+SkHk-Hk(9)将(7),(8)和(9)组合起来,就得到关于Sk,Hk,Ik的递推关系式:如果已知N,和,并给定S0,H0和I0,那么利用上式就可以计算H1和I1,利用H1和I1,由(7)式,可以计算S1,然后计算H2和I2,再计算S2,这样,(10)式就给出了关于传染病传播的第2个数学模式。利用数学模型(4)或(10)式可以对该传染病传播的情形作一些定性的分析。设Sk=Sk1-Sk表示从第k天到第k+1天易受感染者人数的变化,Ik=Ik+1-Ik表示从第k天到第k1天免疫者(或感染后痊愈者)人数的变化。从数学模型(4)式可以看到Sk=-0.01Sk0Ik=0.2Hk0所以易受感染者人数只可能减少不会增加,而免疫者人数只可能增加不会减少。现问对数学模型(10)式来说,易受感染者的人数,免疫者的人数以及传染病人的人数各有什么变化规律?分析:类似于数学模式(4)式的情形,分别计算Sk,Ik与Hk(=Hk+1-Hk),然后加以分析。解 由(10)式得:Sk=N-(Hk+1Ik+1)-N-(Hk+Ik) =(Ik-Ik+1)+(Hk-Hk+1)=-Hk-SkHk+Hk=-SkHk所以Sk0,k=1, 2,即易受感染者人数只可能减少不会增加。因为Ik=Ik+Hk-Ik=Hk 所以Ik0,k=1,2,即免疫者人数只可能增加不会减少。现在设Hk=Hk+1-Hk表示从第k天到第k1天传染病人的人数的变化,则由(10)式得Hk=SkHk-Hk=(Sk-)Hk,所以当(Sk-)0时,传染病人的人数第k1天比第k天增加;当(Sk-)0时,传染病人的人数相应地减少,也就是说,当易受感染者人数Sk“大”时,可使(Sk-)0,从而传染病人的人数增加;当易受感染者的人数Sk“小”时,可使(Sk-)0,从而传染病人的人数减少。解一元一次不等式Sk-0(或Sk-0)得如,打预防针等),那么可以降低发病率从而降低值。如果发明了一种好的药品可以缩短患病期,那么就可以提高传染病人每天的痊愈率。现在有这样的一个实际问题,有一个药物研究小组提出需要100万元的科研经费在一年内试制某种预防针剂,可使发病率降低从而使值降低25,而另一个药物研究小组提出需要100万元的科研经费在一年内试制某种药品,可使痊愈率提高30%。如果仅有一笔100万元的科研基金可供申请,那么这笔基金应提供给哪一个小组?对于用药物的方法,2=(1+30%),2=,所以由于C1C2,所以这笔基金应提供给试制预防针剂的小组7 模型检验把模型求解的结果,经“翻译”再回到实际对象中,用实际现象,数据等检验模型的合理性和适用性。如果检验结果不符合或部分不符合实际情况,并且肯定在模型建立和求解过程中没有失误的话,那么应该修改假设,重新建模。在本题中,我们可以检验由(4)式计算出来的理论数值与实际统计的数据是否吻合。如果比较吻合,则模型是成功的;如果差别太大,则模型是失败的;如果部分吻合,则可找原因,发现问题,修改模型。例如,当某种传染病每天的发病人数既与易受感染者人数有关又与传染病人的人数有关时,那么必须把原数学模型中的(2)式加以修改,假设传染病人的人数符合(10)式,建立新的数学模型(10)式,然后对新的数学模型加以检验,直到检验结果令人满意为止。8 模型应用应用的方式因问题的性质和建模的目的而不同。例如,利用计算结果
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年公考时政常考题50道及答案
- 中级钳工应知试题及答案
- 音乐知识考核试题及答案
- 海姆立克急救法测试题(附答案)
- 2025全国农民科学素质网络竞赛知识试题库及答案
- 2025年《突发事件应对法》知识考试题库(含答案)
- (2025)班组级安全培训考试题库及参考答案
- 临床侵入性操作中的MDRO感染防控相关试题及答案
- 标准化课件文档
- 化纤聚酯知识培训课件
- 装修施工项目投标书模板
- 江苏省苏州市工业园区2025届数学九年级第一学期开学统考试题【含答案】
- 吊篮作业人员安全技术交底
- 机械加工与装配作业指导书
- 2024年辽宁省第二届职业技能大赛(焊接赛项)理论参考试题库(含答案)
- 2024年风力发电机设计导则DG03偏航和俯仰轴承报告(英文版)-NREL
- 医疗质量医疗安全核心制度知识试题题库及答案
- 沥青购销合同范本2024年
- 餐饮与单位用餐协议书模板
- 义务教育道德与法治课程标准2022版
- 人工智能赋能语文教育的创新发展研究
评论
0/150
提交评论