智能小车说明书.doc_第1页
智能小车说明书.doc_第2页
智能小车说明书.doc_第3页
智能小车说明书.doc_第4页
智能小车说明书.doc_第5页
免费预览已结束,剩余53页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

西华大学毕业设计说明书摘 要随着汽车工业的迅速发展,关于汽车的研究也就越来越受人们的关注,而汽车的智能化已成为科技发展的新方向。本设计就是在这样的背景下提出来的。此次设计的简易智能小车是基于单片机控制及传感器技术的,实现的功能是小汽车可自动寻迹行驶,并且能够利光电传感器检测道路上的障碍,利用电两个电机的差动调节, 控制电动小汽车的自动避障、寻光及自动停车,同时能够在行驶过程中显示里程、速度、时间等。通过寻迹传感器进行黑线的检测、霍尔传感器进行里程的记录,并由单片机系统来控制智能车的行驶状态。采用PWM技术实现了电动机的多级调速.关键词:单片机 PWM 寻迹传感器 霍尔传感器AbstractWith the development of automobile industry,people pay more attention to the research about cars, and the intelligent electric vehicles are more and more import. The design is put forward in this context .The simple design of smart car is based on the single-chip control and sensor technology, the realization of an automatic tracing traffic, using Two electric motors differential regulation ,Control automatic electric car obstacle avoidance, light search and automatic parking and can process in a moving display features such as mileage records .The use of rear-wheel drive front wheel steering mode of traveling through tracing sensors, such as Hall sensors detect the black lines and mileage records, by the single-chip system to decision-making Smart car driving. Using PWM technology to achieve a multi-stage motor speed .Key words: single-chip control PWM Seeks the mark sensor Hall sensorI西华大学毕业设计说明书目 录1 前 言11.1智能小车的意义和作用11.2智能小车的现状12方案设计与论证22.1 模块方案比较及论证22.2 车体设计32.3 电源及稳压模块32.4 主控模块42.5探测及寻迹模块52.6 电机选择及驱动模块72.7 直流调速设计82.8 遥控方案设计132.9 无线通信模块工作原理163系统的具体设计与实现223 .1电源模块223.2 控制模块223.3 LCD1602A显示原理263.4 路面检测模块263.5 测速模块273.6 复位电路模块283.7整体原理电路284软件设计315 仿真36智能小车展望37总结体会38致谢39【参考文献】40附录1 原理图41附录2仿真图42附录3 程序清单43西华大学毕业设计说明书1前 言1.1智能小车的意义和作用 自第一台工业机器人诞生以来,机器人的发展已经遍及机械,电子,冶金,交通,宇航,国防等领域.近年来机器人的智能水平不断提高,并且迅速地改变着人们的生活方式.人们在不断探讨,改造,认识自然的过程中,由此发展起来的智能小车引起了众多学者的广泛关注和极大的兴趣。智能小车,也就是轮式机器人,最适合在那些人类无法工作的环境中工作,该技术可以应用于无人驾驶机动车,无人生产线,仓库,服务机器人,航空航天等领域。作为20世纪自动化领域的重大成就,机器人已经和人类社会的生产、生活密不可分。因此为了使智能小车工作在最佳状态,进一步研究及完善其速度和方向的控制是非常有必要的。智能小车要实现自动寻迹功能和避障功能就必须要感知导引线和障碍物,感知导引线相当给机器人一个视觉功能.避障控制系统是基于自动导引小车(avgauto-guide vehicle)系统,基于它的智能小车实现自动识别路线,判断并自动避开障碍,选择正确的行进路线.使用传感器感知路线和障碍并作出判断和相应的执行动作.该智能小车可以作为机器人的典型代表.它可以分为三大组成部分:传感器检测部分,执行部分,cpu.机器人要实现自动避障功能,还可以扩展循迹等功能,感知导引线和障碍物.可以实现小车自动识别路线,选择正确的行进路线,并检测到障碍物自动躲避.考虑使用价廉物美的红外反射式传感器来充当.智能小车的执行部分,是由直流电机来充当的,主要控制小车的行进方向和速度.单片机驱动直流电机一般有两种方案:第一,勿需占用单片机资源,直接选择有pwm功能的单片机,这样可以实现精确调速;第二,可以由软件模拟pwm输出调制,需要占用单片机资源,难以精确调速,但单片机型号的选择余地较大.考虑到实际情况, cpu使用AT89c52单片机,配合软件编程实现. 1.2智能小车的现状现智能小车发展很快,从智能玩具到其它各行业都有实质成果.其基本可实现循迹,避障,检测贴片,寻光入库,避崖等基本功能,现在大学电子设计大赛智能小车又在向声控系统发展.比较出名的飞思卡尔智能小车更是走在前列,我此次的设计主要实现循迹避障通信及遥控功能。2方案设计与论证根据题目的要求,确定如下方案:首先设计出小车的基本模形以及传动方案,并在车上加装光电检测器,实现对电动车的速度、位置、运行状况的实时测量,并将测量数据传送至单片机进行处理,然后由单片机根据所检测的各种数据实现对电动车的智能控制。这种方案能实现对电动车的运动状态进行实时控制,控制灵活、可靠,精度高,可满足对系统的各项要求。2.1 模块方案比较及论证 根据设计要求,我们的自动避障小车主要由六个模块构成:车体框架、电源及稳压模块、主控模块、探测模块、电机驱动模块组成。 各模块分述如图2-1。 主控模块单片机(AT89C52)自动循迹模块 (传感器CTRT5000)避障系统(传感器E18-D80NK)无线遥控模块(pt2262pt2272)小车间通讯模块速度显示模块(lcd显示)电机驱动及运动模块(L298)上位机通信模块速度检测模块 (传感器A3144E)图2-1智能小车总体框图2.2 车体设计在设计车体框架时,我们有两套起始方案,自己设计画出小车的模型和直接购买玩具电动车改装。 方案一:用现有的小车改装 电动小车价格低廉,有完整的驱动、传动和控制单元,其中传动装置是我们所需的。但玩具电动车采用普通直流电机驱动,带负载能力差,调速方面对程序要求较高。同时,玩具电动车转向依靠前轮电机带动前轮转向完成,精度低,又由于本次毕业设计只是理上研究,和巩固已学过的 相关知识,如果购买小车会自带程序和一些图及参数,容易产生惰性。所以购买小车做实物的价值不大,因些我们放弃这一方案。方案二:自己设计制作车架 自己设计小车底盘,用两个直流减速电机作为主动轮,利用两电机的转速差完成直行、左转、右转、左后转、右后转、倒车等动作。减速电机扭矩大,转速较慢,易于控制和调速,符合避障小车的要求。而且自己制作小车框架,可以根据电路板及传感器安装需求设计空间,使得车体美观紧凑。通过pro/e设计相关的的小车模型,以便更直观的看到小车的运动原理和传动方案,所以综上我们选择方案二。如图2-2所示。图2-2 小车模型设计2.3 电源及稳压模块 方案一:采用交流电经直流稳压处理后供电 6V直流电源提供逻辑电平单片机、逻辑芯片供电二极管降压采用交流电提供直流稳压电源,电流驱动能力及电压稳定性最好,且负载对电源影响也最小。由于需要电线对小车供电,极大影响了壁障小车行动的灵活性及地形的适应能力。而且壁障小车极易把拖在地上的电线识别为障碍物,人为增加了不必要的障碍。故我们放弃了这一方案。 方案二:采用蓄电池供电 蓄电池具有较强的电流驱动能力和较好的电压稳定性能,且成本低廉。可采用蓄电池经7812芯片稳压后给电机供电,再经过降压接7805芯片给单片机及其他逻辑单元供电。但蓄电池体积相对庞大,且重量过大,造成电机负载过大,不适合我们采用的小车车架(玩具电动车车架)。故我们放弃了这一方案。 方案三:采用干电池组进行供电 采用四节干电池降压至5V后给单片机及其他逻辑单元供电,另取六节干电池为电机及光电开关供电。这样电机启动及制动时的短暂电压干扰不会影响到逻辑单元和单片机的工作。干电池用电池盒封装,体积和重量较小,同时玩具车底座可以安装四节干电池,正好可为单片机及其他逻辑单元供电。在稳压方面,起始时考虑使用7805芯片对6V的电池电压进行降压稳压。但考虑到这样使得7805芯片消耗大量能量,降低电池寿命;同时,由于at89c52、光电开关、小车电机对于供电电压要求并不苛刻,故我们将6V电池电压接一个二极管降压后直接给单片机及其他逻辑单元供电。而电机和光电开关的电源不做稳压处理。这样只需在小车遥控上加两个调速按钮,根据电池电量选择合适功率即可,甚至于可直接在软件里设置自动换挡。综合考虑,我们采用方案三,示意图如图2-3所示。9V直流电源直流电机供电光电开关供电 图2-3 电源模块设计2.4 主控模块 由于智能小车的要求不是很高,主要都是一些简单的控制,at89c52是我们在单片机原理与应用技术学习过的,且价格便宜容易购买,所以最终我们直接选用了课程主要介绍的,Atmel公司的单片机作为主控模块,如图2-4所示。 AT89C52的主要性能参数l 与Mcs-51产品指令和引脚完全兼容。l 8字节可重擦写FLASH 闪速存储器 图2-4 AT89C52单片机l 1000 次擦写周期l 全静态操作:0HZ-24MHZl 三级加密程序存储器l 256X8字节内部RAMl 32个可编程I/0口线l 3个16 位定时计数器l 8个中断源l 可编程串行UART通道l 低功耗空闲和掉电模式2.5探测及寻迹模块 避障传感器模块2.5.1车自动避障的原理和方案小车车头处装有二个光电开关,一个光电开关对向左前方,一个光电开关向右前方,(如右图所示)。小车在行进过程中由光电开关向前方发射出红外线,当红外线遇到障碍物时发生漫反射,反射光被光电开关接收。小车根据二个光电开关接受信号的情况来判断前方障碍物的分布并做出相应的动作。光电开关的平均探测距离为30cm。 方案一:使用光电对管探测 光电对关价格低廉,性能稳定,但探测距离过近(一般不超过3cm),使得小车必须制动迅速。而我们由于采用普通直流电机作为原动力,制动距离至少需要10cm。因此我们放弃了这一方案。 方案二:使用视频采集处理装置进行探测 使用CCD实时采集小车前进路线上的图像并进行实时传输及处理,这是最精确的障碍物信息采集方案,可以对障碍物进行精确定位和测距。但是使用视频采集会大大增加小车成本和设计开发难度,而且考虑到我们小车行进转弯的精确度并未达到视频处理的精度,因而使用视频采集在实际应用中是个很大的浪费,所以我们放弃了这一方案。 方案三:使用光电开关进行障碍物信息采集。使用三只E3F-DS30C4光电开关,分别探测正前方,前右侧,前左侧障碍物信息,在特殊地形(如障碍物密集地形)可将正前方的光电开关移置后方进行探测。E3F-DS30C4光电开关平均有效探测距离030cm可调,且抗外界背景光干扰能力强,可在日光下正常工作(理论上应避免日光和强光源的直接照射)。我们小车换档调速后的最大制动距离不超过30cm,一般在1020cm左右,因而探测距离满足我们的小车需求。 综上考虑,我们选用方案四。示意图如图2-5所示。 光电开关1光电开关2电平转换单片机 图2-5 小车避障框图小车循迹的原理这里的循迹是指小车在黑色地板上循白线行走,通常采取的方法是红外探测法。红外探测法,即利用红外线在不同颜色的物体表面具有不同的反射性质的特点,在小车行驶过程中不断地向地面发射红外光,当红外光遇到白色纸质地板时发生漫反射,反射光被装在小车上的接收管接收;如果遇到黑线则红外光被吸收,小车上的接收管接收不到红外光。单片机就是否收到反射回来的红外光为依据来确定黑线的位置和小车的行走路线。红外探测器探测距离有限,一般最大不应超过3cm。方案1:用红外发射管和接收管自己制作光电对管寻迹传感器。红外发射管发出红外线,当发出的红外线照射到白色的平面后反射,若红外接收管能接收到反射回的光线则检测出白线继而输出低电平,若接收不到发射管发出的光线则检测出黑线继而输出高电平。这样自己制作组装的寻迹传感器基本能够满足要求,但是工作不够稳定,且容易受外界光线的影响,因此我们放弃了这个方案。方案2:用光敏电阻组成光敏探测器。光敏电阻的阻值可以跟随周围环境光线的变化而变化。当光线照射到白线上面时,光线发射强烈,光线照射到黑线上面时,光线发射较弱。因此光敏电阻在白线和黑线上方时,阻值会发生明显的变化。将阻值的变化值经过比较器就可以输出高低电平。但是这种方案受光照影响很大,不能够稳定的工作。因此我们考虑其他更加稳定的方案。方案3:用反射型光电探测器RPR220RPR220是一种一体化反射型光电探测器,其发射器是一个砷化镓红外发光二极管,而接收器是一个高灵敏度,硅平面光电三极管。RPR220采用DIP4封装,其具有如下特点:l 塑料透镜可以提高灵敏度。l 内置可见光过滤器能减小离散光的影响。l 体积小,结构紧凑。l 当发光二极管发出的光反射回来时,三极管导通输出低电平。此光电对管调理电路简单,工作性能稳定。因此我们选择了方案3。2.6 电机选择及驱动模块本系统为智能小车,对于智能小车来说,其驱动轮的驱动电机的选择就显得十分重要。由于本实验要实现对路径控制定位和速度测量不是要求太高,精度也不是太高,所以我们综合考虑了一下两种方案。方案1:采用步进电机作为该系统的驱动电机。由于其转过的角度可以精确的定位,可以实现小车前进路程和位置的精确定位。虽然采用步进电机有诸多优点,步进电机的输出力矩较低,随转速的升高而下降,且在较高转速时会急剧下降,其转速较低,不适用于小车等有一定速度要求的系统,经综合比较考虑,我们放弃了此方案。方案2:采用直流电机。直流减速电机转动力矩大,体积小,重量轻,装配简单,使用方便。遥控车马达/小直流电机电机RF-500TB-ZD供电电压 :直流DC3-9V,转速2400r/m是自制玩具车等模型理想选择。能够较好的满足系统的要求,因此我们选择了此方案。电机驱动模块方案一:使用分立原件搭建电机驱动电路 使用分立原件搭建电机驱动电路造价低廉,在大规模生产中使用广泛。但分立原件H桥电路工作性能不够稳定,较易出现硬件上的故障,故我们放弃了这一方案。 方案二:使用L298N芯片驱动电机 L298N是一个具有高电压大电流的全桥驱动芯片,它相应频率高,一片L298N可以分别控制两个直流电机,而且还带有控制使能端。用该芯片作为电机驱动,操作方便,稳定性好,性能优良。输出电压最高可达50V,可以直接通过电源来调节输出电压;可以直接用单片机的IO口提供信号,而且带有使能端,方便PWM调速,电路简单,性能稳定,使用比较方便。L298N芯片可以驱动两个二相电机,也可以驱动一个四相电机,正好符合我们小车两个二电机的驱动要求。 综合考虑,我们采用L298N芯片驱动小车电机。 控制示意图如图2-6所示。保护电路L298驱动芯片+9直流供电电源电机电机+5V直流供电电源保护电路单片机指令总线 图2-6 电机驱动框图2.7 直流调速设计、基于晶闸管作为主电路的调速系统晶闸管的调速系统是采用分离元件设计的调速系统占用的空间大,控制角难于调整,且模拟器件的固有缺陷如:温漂、零漂电压等,导致电机的调速无法达到满意的结果。晶闸管的单向导电性,它不允许电流反向,给系统的可逆运行造成困难,性能较差,自动化控制程度差,调速过程较为复杂,不利于工业生产和小功率电路中采用。另一问题是当晶闸管导通角很小时,系统的功率因素很低,并产生较大的谐波电流,从而引起电网电压波动殃及同电网中的用电设备,造成“电力公害”。 、基于PWM为主控电路的调速系统 与传统的直流调速技术相比较,PWM(脉宽调制技术)直流调速系统具有较大的优越性:主电路线路简单,需要的功率元件少;开关频率高,电流容易连续,谐波少,电机损耗和发热都较小;低速性能好,稳速精度高,因而调速范围宽;系统频带宽,快速响应性能好,动态抗干扰能力强;主电路元件工作在开关状态,导通损耗小,装置效率高。PWM信号的产生通常有两种方法:一种是软件的方法;另一种是硬件的方法。基于NE555,SG3525等一系列的脉宽调速系统:此种方式采用NE555作为控制电路的核心,用于产生控制信号。NE555产生的信号要通过功率放大才能驱动后级电路8。NE555、SG3525构成的控制电路较为复杂,且智能化、自动化水平较低,在工业生产中不利于推广和应用。基于单片机类由软件来实现PWM:在PWM调速系统中占空比D是一个重要参数在电源电压不变的情况下,电枢端电压的平均值取决于占空比D的大小,改变D的值可以改变电枢端电压的平均值从而达到调速的目的。改变占空比D的值有三种方法:A、定宽调频法:保持不变,只改变t,这样使周期(或频率)也随之改变。B、调宽调频法:保持t不变,只改变,这样使周期(或频率)也随之改变。C、定频调宽法:保持周期T(或频率)不变,同时改变和t前两种方法在调速时改变了控制脉冲的周期(或频率),当控制脉冲的频率与系统的固有频率接近时,将会引起振荡,因此常采用定频调宽法来改变占空比从而改变直流电动机电枢两端电压。利用单片机的定时计数器外加软件延时等方式来实现脉宽的自由调整,此种方式可简化硬件电路,操作性强等优点。总之,PWM既经济、节约空间、抗噪性能强,是一种值得广大工程师在许多设计应用中使用的有效技术。且用软件实现非常容易。2.7.1小车差速运动模型的建立本设计中,采用的四轮结构,驱动系统采用两轮差速驱动方式,后两个为从动轮,只起到支撑平衡作用,在建模中可以忽略。假定左右两个驱动轮与地面之间没有滑动,也没有侧移,只是做纯粹的滚动,则机器人满足钢体运动规律14。图2-7所示XW,YW,O为世界坐标系,X,Y,O为移动坐标系,PX为机器人前进方向。图2-7 小坐标系移动机器人运动学主要处理控制参数和系统在状态空间的运动两者之间的关系,它包括正运动学和逆运动学两个方面。正运动学解决如何根据移动机器人的速度来计算它的位姿或运动轨迹,当机器人的位姿(x,y,)时,差动轮式机器人的正运动学就是利用这连个差动轮的速度(,)来计算其位姿,通用公式计算如下 (2-1) (2-2) (2-3)其中, 和分别为左右轮的驱动速度,是两个驱动轮之间的距离,为移动机器人的驱动轮半径;移动机器人逆运动学解决如何控制轮子的速度以达到移动机器人所需的运动轨迹或位姿,即在已知位姿(x,y,)时,如果根据以上公式,求出两轮差动速度(,)。由于差动轮式驱动属于非完整性约束问题,故移动机器人逆运动学只有在特殊条件下求解,其解往往不唯一,根据系统的需求,本文对移动机器人的运动学分析按两种情况分别进行。直线运动当差动轮式移动机器人左右两轮的速度大小相等且方向相同时,机器人的运动轨迹为直线,所图2-8所示。图2-8 直线运动原理图设t=0时,机器人移动坐标系X0,Y0,P0与世界坐标系XW,YW,O重合,经过时间后机器人运动到新的移动坐标系Xt,Yt,Pt,当机器人左右两轮的速度大小相等且方向相同(即=)时由公式(2-3)有:将其代入公式(2-1)(2-2)得:x(t)= t (2-4)y(t)=0 (2-5)由和(2-4) (2-5)式可知:机器人左右两轮的速度大小相等而方向相同时机器人的运动轨迹为直线。、圆弧运动 当差动轮式机器人左右两轮的运动方向相同速度大小保持不变且差速度固定不变时,机器人的运动轨迹为圆弧。设t=0时,机器人移动坐标系X0,Y0,P0与世界坐标系XW,YW,O重合,经过时间后机器人运动到新的移动坐标系Xt,Yt,Pt,如图:2-9圆弧运动原理图当机器人左右两轮的速度差恒定,且方向保持不变时,由公式(2-3)有: (2-6)将和代入公式(6-1) 有: (2-7)求定积分得: (2-8)将和代入公式(2-2) 有: (2-9)由公式(2-9)有: (2-10)由公式(2-10)有: (2-11) (2-12)由上可知,机器人的运动轨迹为一圆弧,将上式转化为圆的标准方程:由式(2-11)、(2-12)可知,当机器人左右两轮的运动方向相同、速度大小保持不变且速度固定不变时,机器人的运动轨迹为圆弧。圆心在世界坐标系YW的轴上。其圆心坐标为:(0,), 圆弧半径为:当机器人右轮速度大于左轮速度时,机器人的运动轨迹在世界坐标系的一、二象限;当机器人右轮速度小于左轮速度时,机器人的运动轨迹在世界坐标系的三、四象限。运动轨迹如图: a : b : 2-10圆弧运动4.5 运动控制参数的确定在本设计中,机器人的驱动轮和从动轮的半径都为40mm,两驱动轮之间的中心距为100mm。由于LPC2106的PWM输出的占空比与L293输出驱动的电机转速成近似的线性关系,故可以根据给定的速度要求,拟合出占空比的近似值,反过来,对于给定的占空比,同样可以得到相应的速度近似值。设拟合方程为: 其中:表示占空比表示小车直线的速度在这个方程中,有三个未知数a、b、c,在试验的条件下,分别取三组(,),则可以确定三个未知数的值。要求直线运动时, 把两路PWM输出的占空比赋予相同的值,即可得到与之对应速度的直行效果。要求圆弧运动时,从初始时刻给定机器人的车轮转速,将机器人的起始坐标设在0,0处,机器人做圆弧运动时,其圆心坐标为(0,), 圆弧半径为:按照机器人逆运动学原理,假设要使机器人按半径为R的圆弧运动,则根据R可以计算出机器人左右轮所需的速度和速度差。为此,取R=50cm进行分析。从cm可知,机器人所以的速度和速度差可以有多个解。下面讨论的情形。当时:两驱动轮间距离为100cm,则由,可得=,因而右轮的速度。根据拟合方程,可以得到对应的驱动右轮的PWM占空比。说明:对于给定的R,其速度和差速度解可以有多个,所以在左转弯时,假定,右转时则,就有对应的唯一差速度解。由于速度和和PWM的脉冲宽度成正比,所以可以在编程中用脉冲宽度来调节,见仿真。2.8 遥控方案设计2.8.1系统设计遥控器部分框图如:如图2-11所示。图2-11遥控接收部分框图如图2-12所示。小车运动 图2-122.8.2 解决方案(一)采用玩具遥控芯片TX-2/RX-2编码解码芯片。TX-2/RX-2是一对采用CMOS工艺制造的遥控专用集成电路.它具有功耗低,电源电压适用范围宽,工作稳定可靠,外围元件少等特点.TX-2是编码发射电路,RX-2是与TX-2配套使用的译码接收电路。如图2-13图2-14所示。 图2-13 图2-14TX-2/RX-2 的典型的应用电路如:图2-15图2-16图2-15图2-16发射模块:采用带放大三极管S8050的发射电路模块,一个串行数据输入,另外两个引脚供电,发射距离远。在不带电线的情况下也能有5-6m的距离,安装上电线发射距离达100m左右。天线设计采用鞭型天线。接收模块:采用自带天线的接收模块,一般为印刷天线,这样可以减少电路的体积,同时减轻天线的调试工作。2.8.3 解决方案(二)采用PT2262 和PT2272的编码解码芯片。PT2262和PT2272最多支持6位数据编码,一般支持4位数据编码。PT2262 和PT2272有三态地址编码功能,只有地址匹配时才能传输数据。PT2262 和PT2272 的典型应用电路如:图2-17 图2-18图2-17图2-18发射和接受模块采用的设计。发射模块天线,采用螺旋天线,以减少遥控器占用的空间。3.4 方案讨论基于以上的提出的两个方案,结合现实考虑。在智能小车中,一台小车可以和多台小车一起协调工作。由于电磁波传播方向是全方位的,一个遥控器的遥控可能会对多台小车产生影响。假如没有地址配对,那么在多台小车工作时,遥控将会变得混乱,所以使遥控器与仪器的一一配对显得非常重要。基于以上考虑,采用第二种方案能达到现实的要求。发射接受模块,应该要满足体积小,通信距离远,抗干扰性强等要求,所以应该采用有发射放大三极管的发射电路,外加天线设计;接受模块采用印刷天线的设计方法。2.9 无线通信模块工作原理无线通信模块的发射与接收主要采用nRF401作为主工作核心, nRF401是工作在433MHz ISM频段的单片无线收发芯片。nRF401最大传输速率为20kbps,可以和各种单片机和微控制器连接,控制简单方便。配合简单的通信协议,就可以使用nRF401实现无线数据传输。采用点对多点半双工通信机制,设计一个简单有效的通信协议,实现对所采集到的数据进行有效传送。最简单的多机通信方式就是使用串行通信,所以使用单片机串行口配合nRF401芯片,就可以实现简单有效的点对多点通信。其工作原理图如图2-19所示 图2-19微功率无线射频通信模块块特点: 1.微功率发射,最大发射功率10mW。 2.ISM频段,无需申请频点。载频频率433MHz,也可提供868/915MHz载频。 3.高抗干扰能力和低误码率。基于FSK的调制方式,采用高效前向纠错信道编码技术,提高了数据抗突发干扰和随机干扰的能力,在信道误码率为10-2时,可得到实际误码率10-510-6。 4.传输距离远。在视距情况下,天线高度2米,可靠传输距离可达300-4000m(BER=1200bps)。 5.透明的数据传输。提供透明的数据接口,能适应任何标准或非标准的用户协议。自动过滤掉空中产生的假数据(所收即所发)。 6.多信道。 STR系列标准配置提供8个信道,如果用户需要,可扩展到16/32/64信道。满足用户多种通信组合方式。 7.双串口,3种接口方式。 STR系列提供2个串口3种接口方式,COM1为TTL电平UART接口。COM2由用户自定义为标准的RS-232/RS-485口(用户只需要拔插1位短路器再上电即可定义)。 8.大的数据缓冲区。接口波特率为1200/2400/4800/9600/19200/38400bps,格式为8N1/8E1用户自定义,可传输无限长的数据帧,用户编程更灵活。 9.智能数据控制,用户无需编制多余的程序。即使是半双工通信,用户也无需编制多余的程序,只要从接口收/发数据即可,其它如空中收/发转换,控制等操作,STR自动完成。 10. 低功耗及休眠功能。 +5V供电情况下,接收电流。 图2-20 nRF401管脚定义图nRF401管脚定义如图2-20所示。其主要特性如下: 工作频率为国际通用的数传频段 FSK调制,抗干扰能力强,特别适合工业控制场合; 采用PLL频率合成技术,频率稳定性极好; 灵敏度高,达到-105dBm(nRF401); 功耗小,接收状态250 A,待机状态仅为8 A(nRF401); 最大发射功率达 +10dBm ;低工作电压(2.7V),可满足低功耗设备的要求; 具有多个频道,可方便地切换工作频率 ;工作速率最高可达20Kbit/s(RF401); 仅外接一个晶体和几个阻容、电感元件,基本无需调试; 因采用了低发射功率、高接收灵敏度的设计,使用无需申请许可证,开阔地的使用距离最远可达1000米 (与具体使用环境及元件参数有关)。引脚排列和功能 图2-21 nRF401无线收发引脚接连接 nRF401无线收发芯片具有20个引脚。重要时序参数TX与RX之间的切换当从RX切换到TX模式时,数据输入脚(DIN)必须保持为高至少1ms才能收发数据。当从TX切换到RX时,数据输出脚(DOUT)要至少3ms以后有数据输出。Standby与RX之间的切换从待机模式到接收模式,当PWR_UP输入设成1时,经过tSR时间后,DOUT脚输出数据才有效。对 nRF401来说,tST最长的时间是3ms。从待机模式到发射模式,所需稳定的最大时间是tST。Power Up与TX间的切换从加电到发射模式过程中,为了避免开机时产生干扰和辐射,在上电过程中TXEN的输入脚必须保持为低,以便于频率合成器进入稳定工作状态。当由上电进入发射模式时,TXEN必须保持1ms以后才可以往DIN发送数据。从上电到接收模式过程中,芯片将不会接收数据,DOUT也不会有数据输出,直到电压稳定达到2.7V以上,并且至少保持5ms。如果采用外部振荡器,这个时间可以缩短到3ms。应用电路及设计应注意问题在实际应用中,微控制器采用Atmel公司的AT89C52,分别用单片机的P1口各管脚控制nRF401的DIN、DOUT、TXEN、PWRUP、CS这五个脚即可。具体连接可参见图2-21。 接口芯片采用美信公司的RS232转换芯片MAX3316,完成单片机和计算机RS232接口的电平转换及数据发送、接收、请求、清除功能。关于此芯片的使用可参见其手册。 在nRF401芯片使用时,设定好工作频率,进入正常工作状态后,通过单片机根据需要进行收发转换控制,发送接收数据或进行状态转换。在实际的设计应用中,需要注意以下几个问题:(1)天线的接入ANT1和ANT2是接收时LNA的输入,以及发送时功率放大器的输出。连接nRF401的天线是以差分方式连接到nRF401的。在天线端推荐的负载阻抗是400欧姆。图2-21是一个典型的采用差分方式的原理图。射频功率放大器输出是两个开路输出三极管,配制成差分配对方式,功率放大器的VDD必须通过集电极负载,当采用差分环形天线时,VDD必须通过环形天线的中心输入。(2)与单片机共用一个晶振nRF401可以与单片机共用一个晶振,这种应用的连接方式。需要注意从单片机引入的晶体走线不能离数据线或者控制线太近。通信协议的设计 nRF401在很多时候用在便携及移动式设备,在这种应用中需要尽可能长时间的工作,考虑到电池的能耗,往往需要考虑节能和低功耗设计的问题。为了节能,nRF401平时大多数情况下应处于关闭状态,由于无线部分硬件上是不具备自动唤醒功能的,为了达到节能的目的,必须通过软件方式采用合理的通信协议以保证节能同时不丢失数据。 (1)首先每次发送应该有一个前置码,通常可采用101010101010,持续一个给定的周期(比如1秒),这个前置码是节能的基础。(2)接收端平时可以开启接收几个毫秒,如果没有收到规定的前置101010101010,然后关闭约1秒,通过检测前置码而获得同步。开关的时间比也就是工作的占空比,增加前置码的周期可以减少工作的时间,从而减少平均工作电流;需要注意的是增加前置码的长度虽然可以降低功耗,但是会降低系统的响应速度,需要根据系统的要求进行确定。软件设计在设计程序时,要注意各状态转换的时延。nRF401的通讯速率最高为20kbit/s,发送数据之前需将电路置于发射模式;接收模式转换为发射模式的转换时间至少为1ms;可以发送任意长度的数据;发射模式转换为接收模式的转换时间至少为3ms。在待机模式时,电路进入待机状态,电路不接收和发射数据。待机模式转换为发射模式的转换时间至少为4ms;待机模式转换为接收模式的转换时间至少为5.0ms。图2-22无线收发模块(NRF401)车辆监控、遥控、遥测、小型无线网络、无线抄表、门禁系统、小区传呼、工业数据采集系统、无线标签、身份识别、非接触RF智能卡、小型无线数据终端、安全防火系统、无线遥控系统、生物信号采集、水文气象监控、机器人控制、无线232数据通信、无线485/422数据通信、数字音频、数字图像传输等。 .工作频率为国际通用的数传频段 .FSK调制,抗干扰能力强,特别适合工业控制场合 .采用PLL频率合成技术,频率稳定性极好。 .灵敏度高,达到-105dBm .功耗小,接收状态250uA,待机状态仅为8uA .最大发射功率达 +10dBm .低工作电压(2.7V),可满足低功耗设备的要求 .具有多个频道,可方便地切换工作频率 .工作速率最高可达20Kbit/S .仅外接一个晶体和几个阻容、电感元件,基本无需调试 .由于采用了低发射功率、高接收灵敏度的设计,使用无需申请许可证,开阔地的使用距离最远可达1000米* *与具体使用环境及元件参数有关 nRF401工作频段433MHz 信道数2功能 发射/接收 稳频方式 PLL 调制方式 FSK 最大输出功率 +10dBm 灵敏度 -105dBm 最大工作速率 20Kbit/s 工作电压 2.7-5.2V 本单总结出的最终方案如下: 使用干电池组对系统供电,智能小车的模形用pro/e画出基本的形状和各个传感器的安装位置,采用AT89C52作为主控芯片,采用E3F-DS30C4光电开关进行障碍物探测,使用L298N驱动直流电机。3系统的具体设计与实现3 .1电源模块由于本系统需要电池供电,我们考虑了如下集中方案为系统供电。直流电源降压 经过测量,一般四节新南孚电池串联带负载后可提供5.8V电压。经过二极管稳压至5.15.2V后给逻辑器件供电并给系统提供高电平标准。图3-1电机供电也采用电池供电,6节1.5V干电池供电,理论电压是9V,但实际上总共电压也在8.7V左右,虽然略有一点低,但由于我们不对小车进行精确控制,所以选用这个方案,如图3-1所示。3.2 控制模块3.2.1射集成电路图3-2 f05实物图【主要特点】1、 低功耗发射 2、 声表稳频 3、 无数据时发射电流为零 4、 较宽的工作电压范围【应用说明】F05P采用SMT工艺,树脂封装,小体积,声表稳频,内部具有一级调制电路及限流电阻,适合短距离无线遥控报警及单片机无线数据传输。F05P具有较宽的工作电压范围及低功耗特性,ASK方式调制。F05P不能任意调整发射电流,单片机的数据可直接通过串口进入F05P的数据输入端。F05P在无数据输入时单片机必须为低电平状态;F05P+在无数据输入时单片机必须为高电平状态。F05P需要输入数据才能发射,数据信号停止,发射电流为零。F05P对0.1-1ms的数据脉冲发射效果较理想,过宽过窄的脉冲会引起调制效率下降,过调制或调制不足使收发距离变近。F05P对直流电平及模拟信号不能发射。如在数据位前加一些乱码可以抑制接收机的零电平燥声干扰。若采用通用编码器2262,发射效果比单片机好,因为2262的数据无论怎么变,但脉宽是不变的,即使出现一点突发性的外界干扰,解码器的宽容性也会解码输出高电平。而单片机则会出现数据错误。所以单片机必须要工作在可靠的收发区域才能保证较低的误码率。F05P有4个功能引脚,因为体积小,功耗低,无天线只能满足短距离使用,而天线对距离起着很大的作用,天线能否匹配,也是很关键,匹配良好的天线能增加几倍的距离,匹配不好的天线效果很差甚至会引起频率漂移。天线的长度应取发射频率的1/4波长,可以用一根直径0.5-1毫米,长度(433M)18厘米;(315M)24厘米的漆包线代替。但天线必须拉直,指向无所谓。短于1/4波长或弯曲的天线效果会很差。F05P应垂直安装在印板边部,应离开周围器件5mm以上,以免受分布参数影响而停振。FO5P发射距离与输入信号,发射电压,电池容量,发射天线及发射环境有关。在障碍区由于折射反射会形成一些死区及不稳定区域,不同的收发环境会有不同的收发距离,F05P最佳有效工作距离为100M左右。 图3-3 无线发射原理图3.2.2 接收集成电路采用接收模块图3-4 J04V实物图【主要特点】、(0.15mA)特低功耗超再生接收模块、输出无噪声干扰、接收灵敏度高【应用说明】J04V内部具有放大整形电路,只适合数据信号的接收而不适合模拟信号。J04V在A处点可根据需要接一支470K-1M的电阻可使J04V输出更干净,但接收灵敏度会降低。J04V应安装在印板边部并离开周围器件5mm以上,要垂直于线路板,否则会引起频率偏移。如果器件较多还必须注意地线布局合理,如果有晶振或其他信号源,必须远离J04V,否则会引起很多无法排除的干扰致使接收电路无法正常工作。J04V可外接天线提高接收灵敏度,天线长度不限。PT2262和PT2272是CMOS三态编码集成芯片,这组器件广泛用于各种遥控器件上,只需较低的+3V电压就能工作。PT2262 是发射编码芯片,PT2272是接收解码芯片,两者的地址必须配对,而且振荡电阻必须符合要求。PT2262的TE端是发射允许端,接受低电平时,17脚DOUT端输出一串编码。该串编码在载波上发送出去,被接收端接受和解调,输入PT2272的14脚,当地址配对时,VT解码有效端输出高电平,数据端口就会输出与PT2262发射端口一致的数据,从而实现遥控功能。接收电路原理图如图3-5所示。 图3-5 接收电路原理图遥控键盘设计由于没有合适的键盘模型可选,所以自把键进行组合,并实现发送和接收数据,设计的键盘如图3-6所示。图3-6 按键原理图3.3 LCD1602A显示原理3-3-1显示电路本设计中用LCD显示小车运行的时间、运行的路程及小车运行的速度。除此之外还利用LCD对小车进行PWM调速的占空比。这样可以很明了的看出小车的运行情况,便于小车的调试和故障的检查 显示原理图如图3-7所示。图3-7显示原理图3.4 路面检测模块应用两个光电传感应器,安装在车盘下,离地略小于或约四毫米。当金属传感器检测到黑线时将对单片机发送信号,单片机运行相应该程序,改变输给电机驱动信号的电压占空比差来控制小车的速度和方向。图3-8图3-8所示电路中,R1起限流电阻的作用,当有光反射回来时,光电对管中的三极管导通,R2的上端变为高电平,此时VT1饱和导通,三极管集电极输出低电平。当没有光反射回来时,光电对管中的三极管不导通,VT1截至,其集电极输出高电平。VT1在该电路中起到滤波整形的作用。经试验和示波器验证,该电路工作性能一般,输出还有杂散干扰波的成分。如果输出加施密特触发器就可以实现良好的输出波形。但是这种电路用电量比较大,给此种传感器调理电路供电的电池压降较快。究其原因,是因为光敏三极管和三极管VT1导通时的导通电流较大。因此我们考虑用比较器的方案。3-9光电对管检测电路在图3-8所示,可调电阻R3可以调节比较器的门限电压,经示波器观察,输出波形相当规则,可以直接够单片机查询使用。而且经试验验证给此电路供电的电池的压降较小。因此我们选择此电路作为我们的传感器检测与调理电路。3.5 测速模块通过霍尔元件感应磁铁来产生脉冲(当霍尔元件在离磁场较近时输出会是高电平,其它时候是低电平),一个车轮均匀放四个小磁铁,计算一秒所得的脉冲数,从而计算出一秒小车轮子转动圈数,再测量出小车车轮周长即可计算出小车当前速度,累加可得到当前路程。本次设计的小车轮子直径为50mm,所以在程序处理数据时,有(N/4)*3.14*50/t图3-10 霍尔元件接线原理图3.6 复位电路模块单片机的复位电路通过手动来实现,复位电路图如(图3-11)所示。

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论