放大电路频率特性.doc_第1页
放大电路频率特性.doc_第2页
放大电路频率特性.doc_第3页
放大电路频率特性.doc_第4页
放大电路频率特性.doc_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章放大电路的频率特性3.1 频率特性的一般概念一频率特性的概念对低频段, 由于耦合电容的容抗变大, 高频时1/cR, 可视为短路, 低频段时1/C1, 所以上式可简化为fT0f 上式表示了fT和f的关系。 三 共基极电流放大系数的截止频率f 由上述 和 的关系得 (4) (5)定义当 下降为中频0的0.707倍时的频率f为的截止频率。 f、f、 fT之间有何关系? 将式(1)代入式(4)得四 三极管混合参数型等效电路 1.完整的混合型模型 (1) 混合型参数和h参数之间的关系 2. 简化的混合型模型 (2)C的等效过程令此式表明, 从b、e两端看进去, 跨接在b、c之间的电容C的作用, 和一个并联在b、e两端, 其电容值为 的电容等效。这就是密勒定理。如图(2)中(c)所示。 3.3 共e极放大电路的频率特性 (1) 共e极放大电路及其混合型等效电路具体分析时, 通常分成三个频段考虑: (1) 中频段: 全部电容均不考虑, 耦合电容视为短路, 极间电容视为开路。 (2) 低频段: 耦合电容的容抗不能忽略, 而极间电容视为开路。 (3) 高频段: 耦合电容视为短路, 而极间电容的容抗不能忽略。 这样求得三个频段的频率响应, 然后再进行综合。 这样做的优点是, 可使分析过程简单明了, 且有助于从物理概念上来理解各个参数对频率特性的影响。 下面分别讨论中频,低频,高频时的频率特性。一 中频放大倍数Ausm由图(2),可得 (2)中频段等效电路 由上述关系代入Uo的表达式中,得3-31二低频放大倍数Ausl及波特由图(3),可得332 (3)低频段等效电路式中p、ri同中频段的定义。将 、 代入式3-32, 得将公式(3 - 31)代入, 并令 3-33 3-34当f=fl时, , fl为下限频率。由(3 - 33)式可看出, 下限频率fl主要由电容C1所在回路的时间常数l决定。将式(3 - 34)分别用模和相角来表示: 3-353-36根据公式(3 - 35)画对数幅频特性, 将其取对数, 得 3-37先看式(3 - 37)中的第二项, 当ffl时故它将以横坐标作为渐近线;当ffl时, 趋于0, 则-180; 当ffl时, 趋于90, -90;当f=fl时, , =-135。 这样可以分三段折线来近似表示低频段的相频特性曲线, 如图(4)(b)所示。 f10fl时, =-180f0.1fl时, =-900.1flf10fl时, 斜率为-45/10倍频程的直线。 可以证明, 这种折线近似的最大误差为5.71, 分别产生在0.1fl和10fl处。 三高频电压放大倍数Aush及波特图 由图(1),可得 (1)高频等效电路由等效电路可求得 则 3-38 (2) 简化等效电路 为求出 与 的关系, 利用戴维宁定理将图(1)进行简化, 如图(2)所示, 其中由图(2),可得代入3-38式,得令 上限频率为 则 3-39式(3 - 39)也可以用模和相角来表示 高频段的对数幅频特性为 (3)高频段对数频率特性 四完整的频率特性曲线(波特图) 将上述中频,低频和高频时求出的放大倍数综合起来,可得共e基本放大电路在全部频率范围内的放大倍数的表达式常用增益带宽积表示放大电路性能的优劣,结果如下画波特图的步骤(1)由电路求出的表达式,(2)写出和的表达式。(3)画出岁数幅频特性和相频特性。关键是要知道表达式分子中的系数以及近似特性发生转折处的频率,即截止频率fH或fL。画复杂电路或系统的波特图,关键在于能画出一些基本因子,如常数K,jf/fL,等的波特图(4)共射极基本放大电路的幅频和相频特性曲线 五其它电容对频率特性的影响 由以上推导上,下限频率时,可以看出一个规律,求某个电容所决定的截止频率,只需求出该电容所在回路的时间常数,然后由下式求出其截止频率即可1耦合电容C2。 C2只影响下限频率,频率下降,C2容抗增大,其两端压降增大,使Uo下降,从而使Au下降。求f1的等效电路如图(5)所示 (5)C2的下限频率的等效电路 2射极旁路电容Ce。 中频段,高频段Ce容抗很小,可视为短路,当频率下降至低频段,其容抗不可忽略。其电路如图(6)所示。 (6)Ce对频率特性的影响3输出端分布电容Co。 当输出端带动容性负载,其电容并联在输出端,它影响上限频率。中频段,低频段时Co的容抗很小,视为开路。高频段时,Co容抗不可忽略,则有 3.3多级放大电路的频率特性一多级放大电路的通频带fbw 多级放大电路的频宽窄于单级放大电路的频宽。它的上限频率小于单级放大器的上限频率;下限频率大与单级放大器的下限频率。由前面的各级放大电路总的电压放大倍数,是各级放大倍数的乘积。即中频区时 在上、 下限频率处, 即fl=fl1=fl2, fh=fh1=fh2处, 各级的电压放大倍数均下降到中频区放大倍数的0.707倍, 即 而此时的总的电压放大倍数为 截止频率是放大倍数下降至中频区放大倍数的0.707时的频率。 所以, 总的截止频率fhfh1=fh2; flfl1=fl2。总的频带为二上下频率的计算可以证明,放大电路的上限频率和组成它的各级电路的上限频率之间的关系为下限频率满足下述近似关系: 多级放大器中, 其中某一级的上限频率fhk比其它各级小很多, 而下限频率flk比其它各级大很多时, 则总的上、下限频率近似为例题分析例1 某放大电路在低频段的输入电路如图,画出它的对数幅频特性和相频特性解:(1)华歘电路的波特图,首先要求出它的的表达式可见,这是一个RC高通电路所以,电路的(2) 写出幅频特性和相频特性的表达式, 对数幅频特性表达式为(3)画对数幅频特性和相频特性横坐标:为f (按对数刻度)。在适当位置标出fL=8Hz及0.1fL=0.8Hz,10fL=80Hz。十倍频程的长度要适当。纵坐标:幅频特性为,相频特性为度()。对数幅频特性的画法:因为,在横坐标轴下方-6dB处画一水平线。该正弦在f=fL=8Hz处向下转折成斜率为+20dB/ded的直线,这样,就画出了电路的对数幅频特性。 图(a)斜率为+20dB/ded的直线的画法:该直线的一点在f=8Hz。处(图a上的点A)。由于它的斜率为+20dB/dec,因此可在f=0.8Hz(0.1fL)和(与-6dB相差20dB)处再取点B。连接A和B,即可画出该直线。相频特性的画法:在f/dec得直线,所以在f=8Hz处取的点D,在f=80Hz处取的点E,连接C、D、E三点的直线其斜率为 -45?dec。过点E,相频特性就是f轴()。例2 一射极输出的电路如图a所示。已知,晶体管的=50,。求下限截止频率fL。 (a) (b)解:画处电路的低频微变等效电路。如图b所示单独考虑C1所在的RC电路 单独考虑C2所在的RC回路 fL1(0.24Hz)与fL2(1.56Hz)相差较大(fL2=6.5fL1),所以应取较大者作为fL,即fL=1.56Hz。例3. 放大电路的对数幅频特性如图。(1)电路由几级阻容耦合电路组成,每级的下限和上限截止频率是多少?(2)总的电压增益Aum、下限和上限截止频率fL和fH是多大?解:(1)本例的目的在于学会由已知的对数幅频特性看出多级放大电路的结构。单极的放大电路在fL和fH各有一个+20dB/dec和-20dB/dec的转折。现在低频段有两个转折,斜率达 +40=+202dB/dec;高频段虽然看起来只有一个转个,但实际上是在fH=104Hz处有两个相同的-20dB/dec的转折叠加。由此可见,该放大电路是优良机阻容耦合放大电路组成:第一级的fL1=10Hz,fH1=104Hz;第二级的fL2=100Hz,fH2=fH1=104Hz。从图中还可以看出,多级放大电路总的fL一定大于fL1和fL2,因为在两条低频特性相加后,在100Hz处的下降一定大于3dB。按照fL的定义,总的fL一定在100Hz之后,即fLfL1、f

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论