




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
益生菌的科学定义:是指改善宿主微生态平衡而发挥有益作用,达到提高宿主健康水平和健康状态的活菌及其代谢产物,益生菌存在于地球上的各各角落里面,动物体内有益的细菌或真菌主要有:乳酸菌、双歧杆菌、放线菌、酵母菌等。在人体肠道内栖息着数百种的细菌,其数量超过百万亿个。其中对人体健康有益的叫益生菌,以乳酸菌、双歧杆菌等为代表,对人体健康有害的叫有害菌,以大肝杆菌、产气荚膜梭状芽胞杆菌等为代表。益生菌是一个庞大的菌群,有害菌也是一个不小的菌群,当益生菌占优势时(占总数的80%以上),人体则保持健康状态,否则处于亚健康或非健康状态。自90年代初以来,形形色色的“益生菌”类保健品风靡了整个世界。在国外已开发出数以百计的益生菌保健产品,其中包括:含益生菌的酸牛奶、酸乳酪、酸豆奶以及含多种益生菌的口服液、片剂、胶囊、粉末剂等等。迄今为止,科学家已发现的益生菌大体上可分成三大类,其中包括:乳杆菌类(如嗜酸乳杆菌、干酪乳杆菌、詹氏乳杆菌、拉曼乳杆菌等);双歧杆菌类(如长双歧杆菌、短双歧杆菌、卵形双歧杆菌、嗜热双歧杆菌等);革兰氏阳性球菌(如粪链球菌、乳球菌、中介链球菌等)。此外,还有一些酵母菌与酶亦可归入益生菌的范畴。益生菌对人体到底有哪些保健和抗病作用? 预防或改善腹泻:饮食习惯不良或服用抗生素均会打破肠道菌群平衡,从而导致腹泻。正常人体肠道内栖息着500多种、数十万亿个不同的细菌,它们在绝大多数情况下是互相制约、共存共荣的。一旦肠道菌丛平衡被打破,就会引起腹泻。补充益生菌有助于平衡肠道菌群及恢复正常的肠道pH值,缓解腹泻症状。欧洲一些医疗中心试用以乳杆菌、双歧杆菌与菊糖为主要成分的口服液治疗旅行者腹泻,也取得良好效果。 缓解不耐乳糖症状:乳杆菌可帮助人体分解乳糖,缓解腹泻、胀气等不适症状,可与牛奶同食。 预防阴道感染:酸牛奶中的嗜酸乳杆菌可抑制阴道内白色念珠菌的繁殖。欧洲所做的双盲对照试验证实了这一点。(46名有阴道霉菌感染史的妇女参加了试验)女病人每人每日口服150毫升含大量益生菌的酸牛奶,结果阴道感染发生率大大低于安慰剂组妇女。 增强人体免疫力:在肠道内存在着非常发达的免疫系统。益生菌可以通过刺激肠道内的免疫机能,将过低或过高的免疫活性调节至正常状态。益生菌这种免疫调节的作用也被认为有助于抗癌与抑制过敏性疾病。 促进肠道消化系统健康:益生菌可以抑制有害菌在肠内的繁殖,减少毒素,促进肠道蠕动,从而提高肠道机能,改善排便状况。 降低血清胆固醇:欧洲的高加索山区、地中海沿岸是著名的长寿之乡,当地人常饮自制的酸牛奶,极少患糖尿病、心血管病及肥胖症,大量科学研究证实这与酸牛奶中富含益生菌有关。这些益生菌可降低血清胆固醇水平,从70年代到90年代,国外所做的大量试验证实:喝益生菌饮料确实可降低血清胆固醇。最近国外又有学者发表论文指出:每天喝200毫升加入嗜酸乳杆菌以及菊糖后发酵的酸牛奶,可使高脂血症患者的血脂平均下降4.4左右。因为嗜酸乳杆菌与菊糖两者均有降脂作用。此外,研究性报道说,长期补充益生菌还有助于防止骨质丢失,预防骨质疏松症,预防癌症和肿瘤的作用。双歧杆菌双歧杆菌是1899年由法国学者Tissier从母乳营养儿的粪便中分离出的一种厌氧的革兰氏阳性杆菌,末端常常分叉,故名双歧杆菌。双歧杆菌分布在胃肠的数量随年龄阶段的增长而减少,分布最多的是母乳营养儿。目前已经发现,双歧杆菌有32个亚型,含有双歧杆菌的生物制剂多达70种。双歧杆菌在母乳喂养儿肠道内大量存在,对婴幼儿有许多好处,如营养、免疫及抗感染作用。并且还具有抗过敏、抗肿瘤、调整肠道功能及改善营养的作用等。在临床上,双歧杆菌具有调整肠道功能紊乱作用。可以预防腹泻,减少便秘,即双向调节。这种调节能起到预防和治疗各种肠道疾病的效果。由于近二十年来微生态学的崛起和医学革命的进展,使双歧杆菌研究的重要性越来越被认识。由于双歧杆菌制品在世界范围得以广泛应用,广大群众已认识到其重要性。特别是能够为婴幼儿的肠道健康提供独特的保护作用,有效地减少婴幼儿肠道感染的发病率。双歧杆菌的主要作用与广泛应用,也为双歧杆菌的研究奠定了发展的基础。经过众多专家学者的不断探索实验,已确认双歧杆菌是肠内最有益的菌群,双歧杆菌数量的减少乃消失是“不健康”状态的标志,双歧杆菌是人体健康的晴雨表。微生态学研究发现在健康人体的消化道中的细菌数有100种,其数量达100兆以上。人体肠道内细菌群随着人的年龄增加变化显著。婴儿出生34个月即出现双歧杆菌,婴幼儿双歧杆菌数量占约肠内细菌总量的25%;随着年龄的增大,双歧杆菌逐渐减少甚至消失,65岁以上的老人,双歧杆菌数量则减少到仅占7.9%,而产气荚梭菌、大肠杆菌等腐败细菌大量增加;到了老年肠道内充满腐败细菌,双歧杆菌几乎消失。腐败细菌在肠道中分解食物成分,产生氨气、胺类、硫化氨、粪臭素、吲哚、酚类以及亚硝胺等有毒物质,人体长期吸收这些毒素,会加速衰老,诱发癌症,引起动脉硬化、肝脏障碍等疾病。提高双歧杆菌在体内的数量有两种方法:“活菌体外补养”和“活菌体内增殖”。“活菌体外补养”就是口服有一定数量双歧杆菌的活菌制。双歧杆菌是人体内存在的一种生理性细菌,是人体有益菌中最值得重视和研究的一种,它与人体的健康密不可分,可以说是大自然赐予人类的健康法宝。1双歧杆菌将糖分解后生成乳酸和醋酸,使肠道呈酸性,其结果能控制由有害菌引起的异常发酵,并且刺激肠蠕动,起到解除便秘的作用。便秘是指排便次数减少或粪便干燥难解(一般两天以上无排便)而言,根据病因其大致上可分为器质性便秘和功能性便秘两大类。双歧杆菌主要用于功能性便秘这一类症状。引起功能性便秘一般来说与肠道菌失调密切相关,多半互为因果。成其是肠道外籍菌(或过路菌)等腐败菌增加,其产生相应有毒代谢产物如胺、酚、吲哚类等物质。通过调整肠道正常菌群,使腐败菌数量大大减少,而其有毒代谢产物吸收减少,从而使便秘症状得以缓解。尤其补充双歧杆菌等原籍菌,其产生乙酸和乳PH值为2.83.1,使肠道呈酸性,其结果能控制由有害菌引起的异常发酵,并且刺激肠蠕动,从而减少水分的过度吸收而缓解便秘症状,还可以复活机体免疫功能,有利于调整内分泌免疫功能恢复,恢复肠道蠕动功能从而缓解便秘等症状。2歧杆菌可治疗慢性腹泻。通过用双歧杆菌对慢性腹泻患者临床观察研究表明,在服药两周以后,患者大便次数、形状正常,临床症状消失,对总有效率为90.3%,复发率低。许多国内医院已将双歧杆菌制剂作为治疗慢性腹泻的首选药物。抗生素相关性肠炎实际上是抗生素的使用,使原来过路菌或外籍菌(如肠杆菌)成为优势种群,它们大量增殖或分泌相关毒素与肠粘膜上皮细胞受体结合后使CAMP酶活性升高,大量水盐电解质丢失,而造成腹泻症状。增殖双歧杆菌,扶植了肠道中的原籍菌,使机体定植抗力升高,有利于拮抗致病菌和条件致病菌的定植。双歧杆菌可治疗因大量使用抗生素而导致的伪膜性肠炎。有人采用双歧杆菌制剂治疗伪膜性肠炎380例,临床总治愈率无明显差异,但临床副作用和复发率均明显降低。 3产生的乳酸和醋酸,能提高钙、磷、铁的利用率,促进铁和维生素D的吸收。双歧杆菌发酵乳糖产生半乳糖,是构成脑神经系统中脑苷脂的成分,与婴儿出生后脑的迅速生长有密切关系。双歧杆菌可以产生维生素B1、B2、B6、B12及丙氨酸、缬氨酸、天冬氨酸和苏氨酸等人体必需的营养物质,对于人体具有不容忽视的重要营养作用。4在肿瘤防治方面的辅助性治疗作用: 黄曲霉素是经常污染食品的真菌类毒素,其可诱发肝癌。实验结果证实双歧杆菌体内结合黄曲霉素能力。此外双歧杆菌可以与亚硝酸胺或亚硝基胍等诱导剂发生结合,掩盖诱变剂的活性基因,或使诱变剂活性基因降解,致其推动活性。实验证明双歧杆菌与烟熏肉或油炸食品诱变原具有高吸附性,从而保护机体细胞免受这些致癌物质损害。双歧杆菌可通过调整肠道正常菌群,抑制肠道许多腐败菌生长,从而减少一些致癌物质产生,从而大大降低了消化道癌症的发生率。近年来国内外学者报告双歧杆菌具有激活机体巨噬细胞或LAK细胞的吞噬活性,并产生一定量的细胸因子如TNFa INF V等可直接杀死肿瘤细胞。抑制肿瘤内血管形成,破坏肿瘤组织微血管,最终导致出血、坏死。双歧杆菌等生理性细菌可通过肿瘤细胞凋亡的表达的相关基因,诱导肿瘤细胞的凋亡而达到抑制肿瘤生长的作用。诱导肿瘤细胞的老化和异质化。以便促使机体内LAK和天噬细胞的识别和捕杀。达到清除肿瘤细胞的目的。可以增加机体对放疗的放射线的耐受性,改善放化疗患者的恶心、呕吐等胃肠道副作用。5保护肝脏 人体肠道的有害菌产生并释放毒素进入血液中,对于肝脏会产生很严重损伤。双歧杆菌制剂可以抑制产生毒素的有害菌数量,从而对肝脏患者起到良好的治疗作用。8家国内大医院采用双歧杆菌制剂对365例慢性肝炎患者进8周治疗,发现患者肝功能明显改善。双歧杆菌还可以用于治疗肝昏迷,并可以抑制乙肝病毒,促进大、小三阳转阴。6防治高血压和动脉硬化 人体血液中胆固醇含量会导致动脉硬化和高血压的发生,双歧杆菌等有益菌可以影响胆固醇的代谢,将其转化为人体不吸收的类固醇,降低血液中胆固醇的浓度,因而对高血压和动脉硬化有一定的防治作用。7改善乳糖消化不良症 牛奶具有丰富的营养,是老年人和婴儿良好的食品。但是中国人中有相当一部分缺乏乳糖酶,不能分解牛奶中的乳糖,这些人饮用牛奶后,常常会出现胃肠道紊乱,导致胃肠痉挛、胀气或腹泻,迫使这一人群不能饮用牛奶,从而放弃了牛奶中的其它重要成分,双歧杆菌在乳制品发酵过程中可以产生乳糖酶,帮助患者消化乳糖。乳糖酶缺乏者,饮用经双杆菌发酵的乳制品,就既可以获得牛奶中丰富的营养,又免受胃肠道病痛之苦。8抗衰老作用 欧美和日本的微生态调查表明,长寿老人粪便中的双歧杆菌数量与中、青年相当。我国科学家对广西巴马地区长寿老人的调查也得了相同的结果。双歧杆菌抗衰老的原因,是因为双歧杆菌能抑制腐败菌生长,减少其代谢产物中的氨、硫化氢、吲哚及粪臭素等有害物质的生成。此外近年双歧杆菌在食物过敏症的防治、幽门螺旋杆菌引起胃炎(胃溃疡等)的防治及溃疡性结肠炎防治等方面都具有相当的进展。双歧杆菌与一般药品不同。一般药品是单向治疗,例如降血压、降血脂、治腹泻、治便秘等,其作用是单向的。而双歧杆菌制剂的作用是双向调整的,既可将高的降下来,也可将低的升上去,9双歧杆菌是一种活菌制剂,对致病菌的抑制作用并非是直接杀菌,如果应用于急性感染就难以达到快速而持久地疗效;症状较轻的肠道感染可以早期用活菌制剂,但应该与抗生素间隔12小时。双歧杆菌开发现状l 双歧杆菌因子的开发与应用 微生物学家在研究肠道生理菌体外培养时发现,一些物质能显著促进双歧杆菌的生长,所以称双歧因子。这些物质计有:双歧困子I(人的初乳)、双歧因子II(多肽及次黄嘌呤)、胡萝卜双歧因子和寡糖歧因子。寡糖类双歧因子是一些不同类型的低聚寡糖,机体和一些有害细菌不能利用,但能促进双歧杆菌和一些乳酸菌的生长,有低聚半乳糖低聚果糖、低聚葡萄糖等几十种。临床给病人服用低聚果糖,每日8g,2周后每克粪便中的双歧杆菌数由106.8增至109.7,病人的消化能力和健康状况大为改善。成人每天服用4g低聚葡萄糖,10天后肠内的双歧杆菌增加3倍。双歧因子除初乳外,大多为多糖的水解产物,生产工艺简单,成本低廉,是社会效益和经济效益很大的保健品。2 双歧杆菌营养液 针对双歧杆菌营养保健、助消化、抗癌、抗衰老的生理功能,将其制成保健营养品,参加保健营养品市场角逐,成了保健食品厂家增加利润的又一目标。各种牌号的双歧饮料,表明我国对肠道生理菌的开发应用已向世界水平靠近。3 新型酸奶的开发与应用 传统的酸奶,大多采用从自然界分离的菌种。微生物学家对肠道生理细菌功能的再发现,促成了酸奶生产的革命。现在,许多国家生产酸奶已采用从人体分离得到的双歧杆菌、嗜酸乳杆菌和肠球菌作菌种进行发酵,再配以其他辅料,生产出营养价值高、风味独特的新型乳品。如美、日、欧洲的强化酸奶、低钠酸奶、糖化酸奶、果味酸奶、大豆酸奶、什锦酸奶等。我国北京、上海等地的乳品厂也生产出各式新型酸奶,内蒙古还生产出双歧杆菌奶粉。由于这些酸奶用肠道生理菌发酵,配置科学,不但口感好,老少皆宜,而且营养价值比传统酸奶高出许多,被称为“21世纪的发酵奶”,增智益寿的“疗效食品”。4 双歧杆菌药品的开发 由于双歧杆菌对人体有其独特的生理功能,许多国家都在进行双歧杆菌药品的开发。我国一些科研单位和大专院校,研制出不同类型的活菌体制剂,并按照药品卫生标准,对菌株指数、毒性、杂菌含量、包装等进行了系统研究,初步完善了生产工艺。由于活菌体在包装后仍要繁殖,又对贮存最佳条件、有效期进行了研究。现正在完成双歧杆菌、乳酸杆菌活菌体药品标准及使用规范。乳酸菌凡是能从葡萄糖或乳糖的发酵过程中产生乳酸的细菌统称为乳酸菌。这是一群相当庞杂的细菌,目前至少有200多种。除极少数外,其中绝大部分都是人体内必不可少的且具有重要生理功能的菌群,其广泛存在于人体的肠道中。目前已被国内外生物学家所证实,肠内乳酸菌与健康长寿有着非常密切的直接关系。而人体肠道内乳酸菌拥有的数量,随着人的年龄增长会逐渐减少,当人到老年或生病时,乳酸菌数量可能下降100至1000倍,直到老年人临终完全消失。在平时,健康人比病人多50倍,长寿老人比普通老人多60倍。因此,人体内乳酸菌数量的实际状况,已经成为检验人们是否健康长寿的重要指标。现在,由于广谱和强力的抗菌素的广泛应用,使人体肠道内以乳酸菌为主的益生菌遭受到严重破坏,抵抗力逐步下降,导致疾病越治越多,健康受到极大的危胁。所以,有意增加人体肠道内乳酸菌的数量就显得非常重要。目前国际上公认的乳酸菌,被认为是最安全的菌种,也是最具代表性的肠内益生菌,人体肠道内以乳酸菌为代表的益生菌数量越多越好。也完全符合诺贝尔得奖者生物学家梅契尼柯夫“长寿学说”里所得出的结论,乳酸菌=益生菌=长寿菌。人类面对抗生素的日渐无能为力的现状,正在不断寻求新的更加有效的生物抗菌产品,世界发达国家首先认识并开创了以使用乳酸菌为代表的免疫疗法革命。瑞典科学家研究发布的结果是,治疗胃和大肠炎症时直接喝乳酸菌比用抗生素更好,危险性几乎为零。而在日本,乳酸菌制品已占日本乳制品市场的85%以上,二十年来日本青年平均身高增加15厘米,人口平均寿命达85岁,居世界第一位。这都是乳酸菌制品所带来的直接健康功效。乳酸菌大体上可分为两大类。一类是动物源乳酸菌,一类是植物源乳酸菌。因为动物源取自动物,因菌种常处于相对不稳定状态,其生物功效也较不稳定,且在大量食用时,很容易导致人体动物蛋白过敏,即排斥反应。而植物源乳酸菌,因为取自植物易被人体认可,不论摄取多大的量,人体不会产生异体蛋白排斥反应,且植物源乳酸菌比动物源者更具有活力,能比动物源多8倍的数量到达人体小肠内定植,从而发挥其强大而稳定的生物功效。其实普通的乳酸菌,活力极弱,它们只能在相对受限制的环境中存活,一但脱离这些环境,其自身也会遭到灭亡。只有经过特殊工艺处理的乳酸菌才能到达肠道。进入肠内的乳酸菌,必须具备数量多、活力强,才能发挥其生物功效。如何研制出高浓度且活力强的乳酸菌,成为了当今微生学家们追求的梦想。早在20世纪初,俄国著名的生物学家梅契尼柯夫(Mechnikoff,1845-1916),在他获得诺贝尔奖的“长寿学说”里已明确指出,保加利亚的巴尔干岛地区居民,日常生活中经常饮用的酸奶中含有大量的乳酸菌,这些乳酸菌能够定植在人体内,有效地抑制有害菌的生长,减少由于肠道内有害菌产生的毒素对整个机体的毒害,这是保加利亚地区居民长寿的重要原因。这个具有划时代意义的“长寿学说”,为人类利用乳酸菌生产健康食品开创了新纪元。今天,利用乳酸菌生产的健康食品已经一跃成为全世界关注的健康食品。早在5000年前人类就已经在使用乳酸菌。到目前为止,人类日常食用的泡菜、酸奶、酱油、豆豉等,都是应用乳酸菌这种原始而简单的随机天然发酵的代谢产物。有些乳酸菌是人和温血动物的致病菌;有些是人体的正常菌群,存在于口腔和肠道;有些是乳制品及植物发酵食品中的常用菌,常在食品工业中使用,如乳链球菌(Slactis)。有些是特异性的,如肠膜状明串珠菌,是制药工业上生产右旋糖酐(即代血浆)的重要菌种,但也是制糖工业的一种害菌,常使糖汁发粘稠而无法加工。乳酸菌发酵原理是在酶的催化作用下将葡萄糖转化为乳酸,同时放出能量提供给其自身生命活动。工业生产乳酸常用高温发酵菌。例如德氏乳酸杆菌,最适生长温度为45,此菌在乳酸制造(如:制造陈醋,酸奶等)和乳酸钙制造工业上广泛应用。乳酸菌的十大生理功能1、防治有色人种普遍患有的乳糖不耐症(喝鲜奶时出现的腹胀、 腹泻等症状)。2、促进蛋白质、单糖及钙、镁等营养物质的吸收,产生维生素B族等大量有益物质。3、使肠道菌群的构成发生有益变化,改善人体胃肠道功能,恢复人体肠道内菌群平衡,形成抗菌生物屏障,维护人体健康。4、抑制腐败菌的繁殖,消解腐败菌产生的毒素,清除肠道垃圾。5、抑制胆固醇吸收,降血脂、降血压作用。6、免疫调节作用,增强人体免疫力和抵抗力。7、抗肿瘤、预防癌症作用。8、提高SOD酶活力,消除人体自由基,具抗衰老、延年益寿作用。9、有效预防女性泌尿生殖系统细菌感染。10、控制人体内毒素水平,保护肝脏并增强肝脏的解毒、排毒功能。放线菌放线菌因菌落呈放线状而的得名。它是一个原核生物类群,在自然界中分布很广,主要以孢子繁殖。放线菌与人类的生产和生活关系极为密切,目前广泛应用的抗生素约70%是各种放线菌所产生。一些种类的放线菌还能产生各种酶制剂(蛋白酶、淀粉酶、和纤维素酶等)、维生素(B12)和有机酸等。弗兰克菌属(Frankia)为非豆科木本植物根瘤中有固氮能力的内共生菌。此外,放线菌还可用于甾体转化、烃类发酵、石油脱蜡和污水处理等方面。少数放线菌也会对人类构成危害,引起人和动植物病害。因此,放线菌与人类关系密切,在医药工业上有重要意义。放线菌在自然界分布广泛,主要以孢子或菌丝状态存在于土壤、空气和水中,尤其是含水量低、有机物丰富、呈中性或微碱性的土壤中数量最多。放线菌只是形态上的分类,不是生物学分类的一个名词。有些细菌和真菌都可以划归到放线菌。土壤特有的泥腥味,主要是放线菌的代谢产物所致。放线菌在微生物中的分类地位放线菌在形态上分化为菌丝和孢子,在培养特征上与真菌相似。然而,用近代分子生物学手段研究的结果表明,放线菌是属于一类具有分支状菌丝体的细菌,革兰染色为阳性。主要依据为:同属原核微生物:细胞核无核膜、核仁和真正的染色体;细胞质中缺乏线粒体、内质网等细胞器;核糖体为70S;细胞结构和化学组成相似:细胞具细胞壁,主要成分为肽聚糖,并含有DPA;放线菌菌丝直径与细菌直径基本相同;最适生长PH范围与细菌基本相同,一般呈微碱性;都对溶菌酶和抗生素敏感,对抗真菌药物不敏感;繁殖方式为无性繁殖,遗传特性与细菌相似。放线菌的形态与结构放线菌种类很多,多数放线菌具有发育良好的分支状菌丝体,少数为杆状或原始丝状的简单形态。菌丝大多无隔膜,其粗细与杆状细菌相似,直径为1微米左右。细胞中具核质而无真正的细胞核,细胞壁含有胞壁酸与二氨基庚二酸,而不含几丁质和纤维素。以与人类关系最密切、分布最广、种类最多、形态最典型的链霉菌属为例。链霉菌主要由菌丝和孢子两部分结构组成。菌丝根据菌丝的着生部位、形态和功能的不同,放线菌菌丝可分为基内菌丝、气生菌丝和孢子丝三种。1.基内菌丝 霉菌的孢子落在适宜的固体基质表面,在适宜条件下吸收水分,孢子肿胀,萌发出芽,进一步向基质的四周表面和内部伸展,形成基内菌丝,又称初级菌丝或者营养菌丝,直径在0.20.8微米之间,色淡,主要功能是吸收营养物质和排泄代谢产物。可产生黄、蓝、红、绿、褐和紫等水溶色素和脂溶性色素,色素在放线菌的分类和鉴定上有重要的参考价值。放线菌中多数种类的基内菌丝无隔膜,不断裂,如链霉菌属和小单孢菌属等;但有一类放线菌,如诺卡氏菌型放线菌的基内菌丝生长一定时间后形成横隔膜,继而断裂成球状或杆状小体。2.气生菌丝是基内菌丝长出培养基外并伸向空间的菌丝,又称二级菌丝。在显微镜下观察时,一般气生菌丝颜色较深,比基内菌丝粗,直径为1.01.4微米,长度相差悬殊,形状直伸或弯曲,可产生色素,多为脂溶性色素。3.孢子丝 当气生菌丝发育到一定程度,其顶端分化出的可形成孢子的菌丝,叫孢子丝,又称繁殖菌丝。孢子成熟后,可从孢子丝中逸出飞散。放线菌孢子丝的形态及其在气生菌丝上的排列方式,随菌种不同而异,是链球菌菌种鉴定的重要依据。孢子丝的形状有直形、波曲、钩状、螺旋状,螺旋状的孢子丝较为常见,其螺旋的松紧、大小、螺数和螺旋方向因菌种而异。孢子丝的着生方式有对生、互生、丛生与轮生(一级轮生和二级轮生)等多种。孢子孢子丝发育到一定阶段便分化为孢子。在光学显微镜下,孢子呈圆形、椭圆形、杆状、圆柱状、瓜子状、梭状和半月状等,即使是同一孢子丝分化形成的孢子也不完全相同,因而不能作为分类、坚定的依据。孢子的颜色十分丰富。孢子表面的纹饰因种而异,在电子显微镜下清晰可见,有的光滑,有的褶皱状、疣状、刺状、毛发状或鳞片状,刺又有粗细、大小、长短和疏密之分,一般比较稳定,是菌种分类、鉴定的重要依据。孢子的形成为横割分裂,横割分裂有两种方式:细胞膜内陷,并由外向内逐渐收缩,最后形成完整的横割膜,将孢子丝分隔成许多无性孢子;细胞壁和细胞膜同时内缩,并逐步缢缩,最后将孢子丝缢缩成一串无性孢子。放线菌代表属生孢囊放线菌的特点是形成典型孢囊,孢囊着生的位置因种而异。有的菌孢囊长在气丝上,有的菌长在基丝上。孢囊形成分两种形式:有些属菌的孢囊是由孢子丝卷绕而成;有些属的孢囊是由孢囊梗逐渐膨大。孢囊外围都有囊壁,无壁者一般称假孢囊。孢囊有圆形、棒状、指状、瓶状或不规则状之分。孢囊内原生质分化为孢囊孢子,带鞭毛者遇水游动,如游动放线菌属;无鞭毛者则不游动,如链孢囊菌属。链霉菌属(Streptomyces)是最高等的放线菌。有发育良好的分枝菌丝,菌丝无横隔,分化为营养菌丝、气生菌丝、孢子丝。孢子丝再形成分生孢子。孢子丝和孢子的形态、颜色因种而异,是分种的主要识别性状之一。主要分布于含水量较低,有机质丰富的中性或微碱性土壤中,多数为腐生,好氧菌。已知放线菌所产抗生素的90由本属产生。中国科学院微生物研究所根据气生菌丝、孢子堆、基内菌丝的颜色、水溶性色素、孢子丝的形状、孢子的形状和表面结构等特征,将本属分为14个不同的类群,每个群又包括许多不同的种,以此做为链霉菌属各种的鉴定和寻找新的抗生素产生菌的依据。主要代表如产生链霉素的灰色链霉菌。已经发现由链霉菌产生的抗生素有1000多种,应用于临床的有上百种,如链霉素、卡那霉素、丝裂霉素、土霉素等。链霉菌孢子对热的抵抗力比细菌芽胞弱,但强于营养体细胞。对链霉菌的保藏一般利用沙土法,在4冰箱可保存13年。 小单孢菌属菌丝体纤细,直径0.30.6微米,有分枝,不断裂。只形成营养菌丝(基质菌丝),深入培养基内,不形成气生菌丝。孢子单生、无柄,或着生在或长或短的孢子梗上,孢子梗时常分枝成簇。菌落小,直径一般23微米,通常橙黄色或红色,边有深褐黑色、蓝色,表面覆盖一层粉沫状的孢子。一般为好气性腐生。大多分布在土壤或湖底泥土中,堆肥和厩肥中也不少。约有30多种。是产生抗生素较多的一个属。有的种还积累维生素B12。重要代表如产生庆大霉素的棘孢小单孢菌和绛红小单孢菌。诺卡氏菌属即原放线菌属。在培养基上形成典型的分枝菌丝体,弯曲或不弯曲,多数无气生菌丝。培养15小时至4无菌丝产生横隔膜,突然断裂成长短近于一致的杆状、环状体,或带叉的杆状体。每个杆状体内至少有一个核,因此可以复制并形成新的多核的菌丝体。菌落一般比链霉菌菌落小,表面多皱,致密干燥,一触即碎。多为需氧型腐生菌,少数厌氧型寄生菌。已报道有100余种,主要分布于土壤。许多种能产生抗生素,如利福霉素等,有的用于石油脱蜡,烃类发酵及污水处理等。战功累累的放线菌 医生常常使用链霉素、红霉素这一类抗生素药物治病,使许多病人转危为安。抗生素的主角就是大名鼎鼎的放线菌。放线菌的个体由一个细胞组成,这与细菌十分相似,因此它们常被当作细菌家族中的一个独立的大家庭。不过,放线菌又有许多真菌家族的特点,例如菌体由许多无隔膜的菌丝体组成,所以从生物进化的角度看,它是介于细菌与真菌之间的过渡类型。各种放线菌放线菌有许多交织在一起的纤细菌体,叫菌丝。这些菌丝分工不同,有的“埋头大吃”,这是专管吸收营养的基质菌丝;有的朝天猛长,这是作为放线菌成长发育标志的气生菌丝。放线菌长到一定阶段便开始“生儿育女”。它们先在气生菌丝的顶端长出孢子丝,等到成熟之后,就分裂出成串的孢子。孢子的外形有的像球,有的像卵,可以随风飘散,遇到适宜的环境,就会在那里“安家落户”,开始萌生成新的放线菌。放线菌大量存在于土壤中。它们中绝大多数是腐生菌,能将动植物的尸体腐烂、“吃”光,然后转化成有利于植物生长的营养物质,在自然界物质循环中立下了不朽的功勋。还有一种叫弗兰克氏菌,生长在许多非豆科植物的根瘤里,能固定大气中的氮,成为植物能利用的氮肥。放线菌还有许多贡献。目前发现的几千种抗生素中,有一半以上是由放线菌产生的。它的菌落颜色鲜艳,呈放射状,对人体无害,因此,人们常用它作食品染色剂,既美观,又安全。利用放线菌还可以生产维生素B12、蛋白酶和葡萄糖异构酶等医药用品。虽然个别类的放线菌对人类有害,例如分枝杆菌能引起肺结核和麻风病等,但这些比起放线菌的功绩来,实在是微不足道的。放线菌的繁殖放线菌主要以无性孢子的方式进行繁殖,也可通过菌丝片段繁殖新的个体。工业发酵中,液体培养集中一般不形成孢子,其繁殖方式主要是通过基内菌丝的片段来实现。如果将放线菌静置培养在液体培养集中,培养基的表面上往往形成菌膜,膜上会生出孢子。放线菌的无性孢子有分生孢子和胞囊孢子两种;以分生孢子为主。分生孢子的形成是通过横隔分裂来完成的。放线菌的气生菌丝成熟后,分化出孢子丝,然后细胞膜内陷,或细胞壁和细胞膜同时内陷;在由外向内收缩形成横膈膜;最终把孢子丝分成一串分生孢子。放线菌的孢子囊可由孢子囊柄顶端膨大形成;孢子囊可以在气生菌丝上形成,也可由孢子囊柄顶端膨大形成;孢子囊可以在孢子丝上形成。也可在基内菌丝上形成。孢子囊成形后,在发育到一定阶段后,孢子囊内形成横隔,产生不规则排列的胞囊孢子。放线菌产生的孢子有较强的耐干耐旱能力,但不耐高温,60-65处理10-15分钟即失去活力。酵母菌酵母菌是一些单细胞真菌,酵母菌是人类文明史中被应用得最早的微生物。目前已知有1000多种酵母,根据酵母菌产生孢子(子囊孢子和担孢子)的能力,可将酵母分成三类:形成孢子的株系属于子囊菌和担子菌。不形成孢子但主要通过芽殖来繁殖的称为不完全真菌,或者叫“假酵母”。 目前已知大部分酵母被分类到子囊菌门。酵母菌在自然界分布广泛,主要生长在偏酸性的潮湿的含糖环境中,例如,在水果、蔬菜、蜜饯的内部和表面以及在果园土壤中最为常见。酵母营专性或兼性好氧生活,目前未知专性厌氧的酵母。在缺乏氧气时,发酵型的酵母通过将糖类转化成为二氧化碳和乙醇来获取能量。在酿酒过程中,乙醇被保留下来;在烤面包或蒸馒头的过程中,二氧化碳将面团发起,而酒精则挥发。在有氧气的环境中,酵母菌将葡萄糖转化为水和二氧化碳,例如:我们吃的馒头、面包都是酵母菌在有氧气的环境下产生二氧化碳形成蜂窝状蓬松组织。酵母的化学组成与培养基、培养条件和酵母本身所处的生理状态有关。一般情况下:酵母细胞的平均元素组成(%)如下:碳-47 氢-6.5 氧-31 氮-7.510 磷-1.63.5 其他元素的含量很少(%)钙-0.30.8 钾-1.5-2.5 镁-0.10.4 钠-0.06-0.2 硫-0.2在酵母中发现的微量元素(mg/kg)铁-90-350 铜:20-135 锌:100-160 钴:15-65多数酵母可以分离于富含糖类的环境中,比如一些水果(葡萄、苹果、桃等)或者植物分泌物(如仙人掌的汁)。一些酵母在昆虫体内生活。酵母菌是单细胞真核微生物。酵母菌细胞的形态通常有球形、卵圆形、腊肠形、椭圆形、柠檬形或藕节形等。比细菌的单细胞个体要大得多,一般为15微米或520微米。酵母菌无鞭毛,不能游动。酵母菌具有典型的真核细胞结构,有细胞壁、细胞膜、细胞核、细胞质、液泡、线粒体等,有的还具有微体。大多数酵母菌的菌落特征与细菌相似,但比细菌菌落大而厚,菌落表面光滑、湿润、粘稠,容易挑起,菌落质地均匀,正反面和边缘、中央部位的颜色都很均一,菌落多为乳白色,少数为红色,个别为黑色。酵母可以通过出芽进行无性生殖,也可以通过形成子囊孢子进行有性生殖。无性生殖即在环境条件适合时,从母细胞上长出一个芽,逐渐长到成熟大小后与母体分离。在营养状况不好时,一些可进行有性生殖的酵母会形成孢子(一般是四个),在条件适合时再萌发。一些酵母,如假丝酵母(或称念珠菌)不能进行无性繁殖。营 养:酵母菌同其它活的有机体一样需要相似的营养物质,象细菌一样它有一套胞内和胞外酶系统,用以将大分子物质分解成细胞新陈代谢易利用的小分子物质。水 分:像细菌一样,酵母菌必须有水才能存活,但酵母需要的水分比细菌少,某些酵母能在水分极少的环境中生长,如蜂蜜和果酱,这表明它们对渗透压有相当高的耐受性。酸 度:酵母菌能在pH 值为3.0-7.5 的范围内生长,最适pH 值为pH4.5-5.0。温 度:在低于水的冰点或者高于47的温度下, 酵母细胞一般不能生长,最适生长温度一般在2030。氧 气:酵母菌在有氧和无氧的环境中都能生长,即酵母菌是兼性厌氧菌,在缺氧的情况下,酵母菌把糖分解成酒精和二氧化碳。在有氧的情况下,它把糖分解成二氧化碳和水,在有氧存在时,酵母菌生长较快。最常提到的酵母酿酒酵母(也称面包酵母),自从几千年前人类就用其发酵面包和酒类,在酦酵面包和馒头的过程中面团中会放出二氧化碳。因酵母属于简单的单细胞真核生物,易于培养,且生长迅速,被广泛用于现代生物学研究中。如酿酒酵母作为重要的模式生物,也是遗传学和分子生物学的重要研究材料。酵母菌中含有环状DNA-质粒,可以用来作基因工程的载体。酵母产品有几种分类方法。以人类食用和作动物饲料的不同目的可分成食用酵母和饲料酵母。食用酵母中又分成面包酵母、食品酵母和药用酵母等。(1)面包酵母又分压榨酵母、活性干酵母和快速活性干酵母。压榨酵母:采用酿酒酵母生产的含水分7073的块状产品。呈淡黄色,具有紧密的结构且易粉碎,有强的发面能力。在4可保藏1个月左右,在0能保藏23个月产品最初是用板框压滤机将离心后的酵母乳压榨脱水得到的,因而被称为压榨酵母,俗称鲜酵母。发面时,其用量为面粉量的12,发面温度为2830,发面时间随酵母用量、发面温度和面团含糖量等因素而异,一般为13小时。活性干酵母:采用酿酒酵母生产的含水分8左右、颗粒状、具有发面能力的干酵母产品。采用具有耐干燥能力、发酵力稳定的醇母经培养得到鲜酵母,再经挤压成型和干燥而制成。发酵效果与压榨酵母相近。产品用真空或充惰性气体(如氮气或二氧化碳)的铝箔袋或金属罐包装,货架寿命为半年到1年。与压榨酵母相比,它具有保藏期长,不需低温保藏,运输和使用方便等优点。快速活性干酵母:一种新型的具有快速高效发酵力的细小颗粒状(直径小于1mm)产品。水分含量为46。它是在活性干酵母的基础上,采用遗传工程技术获得高度耐干燥的酿酒酵母菌株,经特殊的营养配比和严格的增殖培养条件以及采用流化床干燥设备干燥而得。与活性干酵母相同,采用真空或充惰气体保藏,货架寿命为1年以上。与活性干酵母相比,颗粒较小,发酵力高,使用时不需先水化而可直接与面粉混合加水制成面团发酵,在短时间内发酵完毕即可焙烤成食品。该产品在本世纪70年代才在市场上出现,深受消费者的欢迎。研究发现,安琪酵母的活力是最高的。(2)食品酵母:不具有发酵力的繁殖能力,供人类食用的干酵母粉或颗粒状产品。它可通过回收啤酒厂的酵母泥、或为了人类营养的要求专门培养并干燥而得。美国、日本及欧洲一些国家在普通的粮食制品如面包、蛋糕、饼干和烤饼中掺入 5左右的食用酵母粉以提高食品的营养价值。酵母自溶物可作为肉类、果酱、汤类、乳酪、面包类食品、蔬菜及调味料的添加剂;在婴儿食品、健康食品中作为食品营养强化剂。由酵母自溶浸出物制得的5-核苷酸与味精配合可作为强化食品风味的添加剂(见)。从安琪酵母中提取的浓缩转化酶用作方蛋夹心巧克力的液化剂。从以乳清为原料生产的酵母中提取的乳糖酶,可用于牛奶加工以增加甜度,防止乳清浓缩液中乳糖的结晶,适应不耐乳糖症的消费者的需要。药用酵母制造方法和性质与食品酵母相同。由于它含有丰富的蛋白质、维生素和酶等生理活性物质,医药上将其制成酵母片如食母生片,用于治疗因不合理的饮食引起的消化不良症。体质衰弱的人服用后能起到一定程度的调整新陈代谢机能的作用。在酵母培养过程中,如添加一些特殊的元素制成含硒、铬等微量元素的酵母,对一些疾病具有一定的疗效。如含硒酵母用于治疗克山病和大骨节病,并有一定防止细胞衰老的作用;含铬酵母可用于治疗糖尿病等。(3)饲料酵母:通常用假丝酵母或脆壁克鲁维酵母经培养、干燥制成是不具有发酵力,细胞呈死亡状态的粉末状或颗粒状产品。它含有丰富的蛋白质(3040左右)、B族维生素、氨基酸等物质,广泛用作动物饲料的蛋白质补充物。它能促进动物的生长发育,缩短饲养期,增加肉量和蛋量,改良肉质和提高瘦肉率,改善皮毛的光泽度,并能增强幼禽畜的抗病能力。有些酵母菌对生物或用具是有害的,例如红酵母会生长在浴帘等潮湿的家具上;白色假丝酵母(或称白色念珠菌)会生长在阴道衬壁等湿润的人类上皮组织。酵母作用一、酵母基因组组成 在酿酒酵母测序计划开始之前,人们通过传统的遗传学方法已确定了酵母中编码RNA或蛋白质的大约2600个基因。通过对酿酒酵母的完整基因组测序,发现在12068kb的全基因组序列中有5885个编码专一性蛋白质的开放阅读框。这意味着在酵母基因组中平均每隔2kb就存在一个编码蛋白质的基因,即整个基因组有72的核苷酸顺序由开放阅读框组成。这说明酵母基因比其它高等真核生物基因排列紧密。如在线虫基因组中,平均每隔6kb存在一个编码蛋白质的基因;在人类基因组中,平均每隔30kb或更多的碱基才能发现一个编码蛋白质的基因。酵母基因组的紧密性是因为基因间隔区较短与基因中内含子稀少。酵母基因组的开放阅读框平均长度为1450bp即483个密码子,最长的是位于XII号染色体上的一个功能未知的开放阅读框(4910个密码子),还有极少数的开放阅读框长度超过1500个密码子。在酵母基因组中,也有编码短蛋白的基因,例如,编码由40个氨基酸组成的细胞质膜蛋白脂质的PMP1基因。此外,酵母基因组中还包含:约140个编码RNA的基因,排列在XII号染色体的长末端;40个编码SnRNA的基因,散布于16条染色体;属于43个家族的275个tRNA基因也广泛分布于基因组中。表1提供了酵母基因在各染色体上分布的大致情况。 表1 酵母染色体简况染色体编号长度(bp) 基因数 tRNA基因数 XIII 924430 459 21 XIV 784328 419 15 XV 1092283 560 20 XVI 948061 487 17I 23103 89 4 II 807188 410 13 III 315103 182 10 IV 1531974 796 27 V 569202 271 13 VI 270103 129 10 VII 1090936 572 33 VIII 561103 269 11 IX 439886 221 10 X 745442 379 24 XI 666448 331 16 XII 1078171 534 22 序列测定揭示了酵母基因组中大范围的碱基组成变化。多数酵母染色体由不同程度的、大范围的GC丰富DNA序列和GC缺乏DNA序列镶嵌组成。这种GC含量的变化与染色体的结构、基因的密度以及重组频率有关。GC含量高的区域一般位于染色体臂的中部,这些区域的基因密度较高;GC含量低的区域一般靠近端粒和着丝粒,这些区域内基因数目较为贫乏。Simchen等证实,酵母的遗传重组即双链断裂的相对发生率与染色体的GC丰富区相耦合,而且不同染色体的重组频率有所差别,较小的、和号染色体的重组频率比整个基因组的平均重组频率高。 酵母基因组另一个明显的特征是含有许多DNA重复序列,其中一部分为完全相同的DNA序列,如rDNA与CUP1基因、Ty因子及其衍生的单一LTR序列等。在开放阅读框或者基因的间隔区包含大量的三核苷酸重复,引起了人们的高度重视。因为一部分人类遗传疾病是由三核苷酸重复数目的变化所引起的。还有更多的DNA序列彼此间具有较高的同源性,这些DNA序列被称为遗传丰余(genetic redundancy)。酵母多条染色体末端具有长度超过几十个kb的高度同源区,它们是遗传丰余的主要区域,这些区域至今仍然在发生着频繁的DNA重组过程。遗传丰余的另一种形式是单个基因重复,其中以分散类型最为典型,另外还有一种较为少见的类型是成簇分布的基因家族。成簇同源区(cluster homology region,简称CHR)是酵母基因组测序揭示的一些位于多条染色体的同源大片段,各片段含有相互对应的多个同源基因,它们的排列顺序与转录方向十分保守,同时还可能存在小片段的插入或缺失。这些特征表明,成簇同源区是介于染色体大片段重复与完全分化之间的中间产物,因此是研究基因组进化的良好材料,被称为基因重复的化石。染色体末端重复、单个基因重复与成簇同源区组成了酵母基因组遗传丰余的大致结构。研究表明,遗传丰余中的一组基因往往具有相同或相似的生理功能,因而它们中单个或少数几个基因的突变并不能表现出可以辨别的表型,这对酵母基因的功能研究是很不利的。所以许多酵母遗传学家认为,弄清遗传丰余的真正本质和功能意义,以及发展与此有关的实验方法,是揭示酵母基因组全部基因功能的主要困难和中心问题。 二、酵母基因组分析 在酵母基因组测序以前,人们已知道在酵母和哺乳动物中有大量基因编码类似的蛋白质。对于一些编码结构蛋白质(如核糖体和细胞骨架中的)在内的同源基因,人们并不感到意外。但某些同源基因却出乎人们意料,如在酵母中发现的两个同源基因RAS1和RAS2与哺乳动物的H-ras原癌基因高度同源。酵母细胞如同时缺乏RAS1和RAS2基因,呈现致死表型。在1985年,首次应用RAS1和RAS2基因双重缺陷的酵母菌株进行了功能保守性检测,结果表明,当哺乳动物的H-ras基因在RAS1和RAS2基因双重缺陷的酵母菌株中表达时,酵母菌株可以恢复生长。因此,酵母的RAS1和RAS2基因不仅与人类的H-ras原癌基因在核苷酸顺序上高度同源,而且在生物学功能方面保守。 随着整个酵母基因组测序计划的完成,人们可以估计有多少酵母基因与哺乳动物基因具有明显的同源性。Botstein等将所有的酵母基因同GenBank数据库中的哺乳动物基因进行比较(不包括EST顺序),发现有将近31编码蛋白质的酵母基因或者开放阅读框与哺乳动物编码蛋白质的基因有高度的同源性。因为数据库中并未能包含所有编码哺乳动物蛋白质的序列,甚至不能包括任何一个蛋白质家族的所有成员,所以上述结果无疑会被低估。酵母与哺乳动物基因的同源性往往仅限于单个的结构域而非整个蛋白质,这反映了在蛋白质进化过程中功能结构域发生了重排。在酵母5800多个编码蛋白质的基因中,约41%(2611个)是通过传统遗传学方法发现的,其余都是通过DNA序列测定所发现。约有20%酵母基因编码的蛋白质与其它生物中已知功能的基因产物具有不同程度的同源性(其中约6%表现出很强的同源性,约12%表现出稍弱的同源性),从而能初步推测其生物学功能。酵母基因组中有10%基因(约653个)与其它生物中功能未知的蛋白质的基因具有同源性,被称为孤儿基因对或孤儿基因家族(orphan pairs or family);约25的基因(1544个)则与所有已发现的蛋白质的基因没有同源性,属首次发现的新基因,是真正意义上的孤儿基因。这些孤儿基因的发现是酵母基因组计划的重要收获,对于其功能的阐明,将大大推进对酵母生命过程的认识,因而引起了众多遗传学家的重视。 为了系统地分析酵母基因组测序发现的3000多个新基因的功能,1996年1月,随着DNA测序工作的结束,欧洲建立了名为EUROFAN(European Functional Analysis Network)的研究网络。这一网络由欧洲14个国家的144个实验室组成,它包括服务共同体(service consortia,A1-A4)、研究共同体(research consortia,B0B9)和特定功能分析部(specific functional analysis nodes,N1-N14)三部分,每个部分下设许多小的分支机构。其中研究共同体中的B0部门负责制作特定的酵母基因缺失突变株。缺失突变株的制作采用新发展起来的PCR介导的基因置换方法进行,即将来自细菌的卡那霉素抗性基因(KanMX)与线状真菌Ashbya gossypil的启动子和终止序列构建成表达单元,它可赋予酵母细胞G418以抗性。然后,根据所要置换的染色体DNA序列设计PCR引物,这些引物的外侧与染色体DNA序列同源,内侧则保证通过PCR可以扩增出KanMX基因,PCR产物直接用于基因置换操作。通过这项技术,可以有目的地将新发现的基因用KanMX置换,造成基因缺失突变,随后通过系统地研究这些酵母缺失突变株表型有无改变(如生活力、生长速度、接合能力等)以确定这些基因的功能。此种方法中有两个方面的问题限制实验进程:其一是大部分的突变子(60%80%)并不显示明显的突变表型,这往往与前面提到的遗传丰余有关;其二是许多突变子即使发生了表型改变,也不能反映其编码蛋白质的功能,如某些突变子不能在高温或高盐的环境中生长,但这些表型却不能提示任何有关缺失蛋白质在生理功能方面的信息。 三、酵母作为模式生物的作用 酵母作为高等真核生物特别是人类基因组研究的模式生物,其最直接的作用体现在生物信息学领域。当人们发现了一个功能未知的人类新基因时,可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 农业机械基础课件
- 养护处年度安全培训计划课件
- 农业安全管理培训课件
- 养成刷牙的好习惯课件
- 化工企业安全培训讲师课件
- 化工仪表安全培训总结课件
- 内部安全培训相互监督课件
- 健身权益卡营销方案(3篇)
- 兴义摩托车安全驾驶培训课件
- 初中教师安全培训教案课件
- 云南学法减分题库及答案
- 江苏省制造业领域人工智能技术应用场景参考指引2025年版
- 三级医师查房制度考试题(含答案)
- 文旅公司考试试题及答案
- 2025至2030年中国公立医院行业发展监测及市场发展潜力预测报告
- 2025年全国翻译专业资格(水平)考试土耳其语三级笔译试卷
- TCCEAS001-2022建设项目工程总承包计价规范
- 超高压线路成套保护装置技术和使用说明书
- UPS电池更换方案
- 金属、机械加工件成本核算方法(共8页)
- 公路损坏分类及识别
评论
0/150
提交评论