第七课三角函数的图像和性质.doc_第1页
第七课三角函数的图像和性质.doc_第2页
第七课三角函数的图像和性质.doc_第3页
第七课三角函数的图像和性质.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第七课 三角函数的图像和性质 y=sinxy=cosx 图像定义域 值域单调性在_上递增在_上递减在_上递增在_上递减在_上递增最值无最值奇偶性对称性对称中心对称轴最小正周期1、 知识点:2、函数的性质:(1)振幅:;(2)周期:;(3)初相:二、基础知识:1.关于正弦函数有下列说法:关于原点对称;关于轴对称;关于直线对称;关于点对称;在第一象限是单调增函数.其中正确的是_.2.函数的值域是_.3.的最小正周期为其中则=_.4.将函数的图象上所有的点向右平行移动个单位长度,再把所得点的横坐标伸长到原来的2倍(纵坐标不变),所得图像对应函数解析式为_.5.已知函数最小正周期为.为了得到函数的图象,只要将的图象向_平移_单位.6.函数的对称中心为_,对称轴方程为_.7.设函数,将的图象向右平移个单位长度后,所得的图像与原图像重合,则的最小值等于_.三、例题讲解:例1求下列函数的定义域 (1) ; (2); (3); (4)例2已知函数.(1) 求函数的最小正周期及最值;(2)令,判断函数的奇偶性,并说明理由.例3求下列函数的值域:(1); (2);(3); (4). 例4已知函数.(1) 求函数的最小正周期及在区间上的最大值和最小值;(2)若,求的值.例5已知函数为偶函数,且函数图像的两对称轴间的距离为. (1)求的值;(2)将函数的图象向右平移个单位后,再将得到的图象上各点的横坐标伸长到原来的4倍,纵坐标不变,得到的图象,求得单调递减区间.四、练习:1(1)的最小正周期是_.(2)求函数的值域为_. (3)的最小正周期是_.(4)的最小正周期是_.2已知函数是周期是6的奇函数,且则=_.3已知函数的,其中为实数,若对恒成立,且,则函数的单调递增区间是_.4若函数对任意的都有,则=_.5.将函数的图像上每一点向右平移个单位得到图像C,再将C上每一点的横坐标变为原来的2倍,纵坐标不变,得到图像C,则C对应的函数解析式为_.6.若动直线与函数和的图象分别交于M,N两点,则的最大值为_.7.定义在区间上的函数的图象与的图象的交点为P,过点P作轴于点,直线的图象交于点,则线段的长为 . 8.函数的图像的一条对称轴方程为,则直线的倾斜角为_ _.9、设函数,则的最小正周期为 。10、如果函数的图像关于点中心对称,那么的最小值为_11、已知函数,的图像与直线的两个相邻交点的距离等于,则的单调递增区间是_12、函数的值域是 。13、已知,函数的最大值是 。14、当函数的最大值为时,求的值。15、已知,则的取值范围是 。16、已知函数,()设是函数图象的一条

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论