




已阅读5页,还剩14页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
通信工程专业综合课程设计报告题目:风光互补发电系统设计1. 专业综合设计任务1.1设计题目风光互补发电系统设计1.2 设计背景 随着低碳环保的持续要求,新能源技术得到快速发展。风光互补型发电是较为理想的新能源发电形式。通过课题的分析与设计,培养学生的学习研究能力,提高学生的综合应用分析能力 电力在现实生活中占主导地位,但是受客观环境的限制,有些地区根本无法实现电业的发展和建设。太阳能光伏发电,无运动部件,稳定可靠,但目前成本较高,而风力发电成本低但随机性大,供电可靠性差,将两者结合起来,可实现昼夜发电。在太阳光资源和风资源丰富的地区,风光互补发电系统与单一风电系统和光电系统相比具有供电的连续性好、稳定性和可靠性高等特点,风光互补发电系统是相对较好的独立电源系统,已经在我国的西部很多地区得到了广泛的应用,解决了农牧民的用电问题。此系统就是利用风和光两种自然能源相互补充发电,由太阳能电池板与风力发电机发电,经蓄电池充电,给负载供电的一种新型能源。它既不消耗任何矿物燃料,又完成了对自然能源的合理利用。此系统可以应用于微波通讯、基站、电台、野外活动、高速公路、无电扇区、村庄、海岛的电力提供。而且为了适应偏远地区不便利的地理环境。风光互补发电控制系统几乎完成了智能化,免维护。尤其适合在内蒙古风力大的偏远山区。风光互补发电系统还可以根据用户的用电负荷情况和资源条件进行系统容量的合理配置,既可保证系统供电的可靠性,又可降低发电系统的造价。无论是怎样的环境和用电要求,风光互补发电系统都可做出最优化的系统设计方案来满足用户的要求。因此,风光互补发电系统可以说是最合理的独立电源系统。这种合理性既表现在资源配置上,又体现在技术方案和性能价格上,正是这种合理性保证了风光互补发电系统的可靠性,从而为它的应用奠定了坚实的基础。1.3设计要求(1)设计出风光互补发电系统的原理架构,分析各组成模板的工作原理及特点(2)五人合作完成设计报告,要有明确的分工,报告最后要有每个人总结,包括所作部分的工作和感受。并由组长签字证明该同学在本设计小组中所占地位,供评分老师参考。(3)设计报告格式专业综合课程设计报告模板以便统一装订成册。1.4设计提示(1)熟悉太阳能及风能发电技术的发展现状和目前存在的问题(2)查找资料了解风光互补发电系统的各组成部分,包括各部分的结构,功能,原理,实现方式1.5设计时间安排本次课程设计完成时间为一周,2011-12-26至2011-12-3012月26日小组成员通过网络或者图书馆书籍等途径了解风光互补发电的相关知识及组成架构;27日组长对小组成员进行分组及任务分配;29日前各小组成员上交所负责部分的内容;29日小组成员集合讨论将各部分组合成完整设计并完成设计报告30 日以设计小组为单位由组长交主管老师处2方案设计及论证本次课程设计分工明确,由墨玉峰负责太阳能发电部分,刘楠楠负责风力发电部分,王治国负责储电部分,钟勇负责控制部分,高全负责逆变器部分,师双双负责资料搜索和文档整理部分2.1 系统框图系统结构图如图1所示。该系统是集风能、太阳能及蓄电池等多种能源发电技术及系统智能控制技术为一体的复合可再生能源发电系统。太阳能电池风力发电机微机控制系统逆变器蓄电池图1 系统框图从图1中我们可以看出,它的主要组成设备有:风力发电机:风机采用具有特别适合大多内陆地区低风速、时发电特性好、发电量大的特点。具有机械、电子刹车装置,可以确保在高风速时,风机转速稳定控制在安全可靠的范围内,使最高输出电压成为安全可控的电压2。采用12V/150W风力发电机,当风力3m/s工作,10m/s风速时达到额定150W功率。太阳能光电池板:采用100W/14V ,0.6的硅光电池,它能将太阳能转化为电能,属于一种半导体元件,它的特点:它是转换效率高达15%的单晶硅太阳能电池板。具有抗风、防潮、工作稳定、无需维护等特点。铅酸蓄电池:蓄电池的选择要求:重量轻、体积小、能量转换率高、自放电慢、充放电循次数多(即使用寿命长)等。其次,还有些特殊要求如低温时能大电流放电、维护简单或无需维护、自放电(析氢)特别慢等。微机控制系统:微机控制系统是整个设计的核心内容。它是整个系统安全运行的基本保证。另外本系统受应用环境的要求,本身就要求实现免维护。所以无论从硬件系统还是软件系统都要对系统有保护作用。例如在本系统硬件设计中有蓄电池电压控制,因为直流充电的蓄电池,要求电压控制在101216V之间,才能安全使用,不至于被烧坏。所以电压控制用来保证其既不过充又不过放;继电器工作要求是:在接受到指令后,要按指令要求来动作。而且一旦出错就要有报警显示。为了实现继电器正常工作,系统设有继电器动作检测,并对故障状态设有报警显示;为了保证整个系统工作的正常,执行动作正确,系统对ADC0809的转换也设有转换结果正确与否的检测,并在ADC0809不正常工作时报警显示;整个系统是一个严密完整的智能化系统,使用起来方便。逆变器:逆变系统是把蓄电池中的直流电变成标准的220V交流电,保证交流电在设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量;在逆变器的电路结构形式上,主要是工频变压器和高频变压器两种形式。对一个风光发电系统而言,逆变器是一种电力电子设备,抗过载,抗冲击的能力要相对弱一些,是最易出故障的单元。2.2太阳能电池部分 负责人: 墨玉峰2.2.1太阳能电池的原理太阳能光伏电池(简称光伏电池)用于把太阳的光能直接转化为电能。目前世界各国正在研究的太阳电池主要有单晶硅、多晶硅、非晶硅太阳电池。在能量转换效率和使用寿命等综合性能方面,单晶硅和多晶硅电池优于非晶硅电池。多晶硅比单晶硅转换效率略低,但价格更便宜。另外,还有其它类型的太阳电池5。太阳能电池的能量转换是应用P-N结的光伏效应(Photovoltaic Effect)。首先对P-N结二极管做一简单说明。如图2所示,为一理想的P-N结二极管的电流-电压(I-V)特性图,其对应的方程式如下: (1)Ipn,Vpn:P-N结二极管的电流及电压k:波尔兹曼常数(Boltzmann Constant:1.3810-23J/K)q:电子电荷量(1.60210-19库仑)T:绝对温度(凯氏温度K摄氏温度273度)Is:等效二极管的逆向饱和电流VT:热电压(Thermal Voltage:25.68mV)太阳能电池将太阳光能转换为电能是依赖自然光中的的量子-光子(Photons),而每个光子所携带的能量为Eph: (2)h:普郎克常数(Planck Constant:4.1410-15eVS)c:光速(3108m/s):光子波长图2P-N结二极管I-V特性图但并非所有光子都能顺利地通过太阳能电池将光能转换为电能,因为在不同的光谱中光子所携带的能量不一样。子所携带的能量大于禁带(Band Gap)能量时,电子由价电带(Valence Band)跃迁至导电带(Conduction Band)而产生所谓的“电流”,所以当光子所携带的能量若大于禁带能量时,便可以通过光电子转换成电能。当入射太阳光的能量大于硅半导体的禁带能量时,太阳光子照射入半导体内,把电子从价电带激发到导电带,从而在半导体内部产生了许多“电子-空穴”对,在内建电场的作用下,电子向N型区移动,空穴向P型区移动,这样,N区有很多电子,P区有很多空穴,在P-N结附近就形成了与内建电场方向相反的光生电场,它的一部分抵消了内建电场,其余部分则使P区带正电,N区带负电,于是在N区与P区之间产生了光生伏打电动势,这就是所谓的“光生伏打效应”。如果位太阳电池开路,即组成电池回路中,负载电阻为无穷大,则被P-N结分开的电子和空穴,就会全部积累在P-N结附近,于是出现了最大光生电动势,它的数值即为开路电压,记作Voc。如果把太阳电池短路,即回路负载电阻为零,则所有P-N结附近的电子与空穴,由结的一边,流经外电路到达结的另一边,产生了最大可能的电流,即短路电流记作ISC。太阳能电池相当于具有与受光面平行的极薄P-N结的大面积的等效二极管,因此可以假设太阳能电池为一个二极管与太阳光电流发生源所并联的等效电路,如图3所示。当光图3 太阳能电池的理想状态等效电路2.2.2 太阳能电池板的计算硅太阳能发电板容量是指平板式太阳能板发电功率WP。太阳能发电功率量值取决于负载24h所能消耗的电力H(WH),由负载额定电源与负载24h所消耗的电力,决定了负载24h消耗的容量P(AH),再考虑到平均每天日照时数及阴雨天造成的影响,计算出太阳能电池阵列工作电流IP(A)。由负载额定电源,选取蓄电池公称电压,由蓄电池公称电压来确定蓄电池串联个数及蓄电池浮充电压VF (V),再考虑到太阳能电池因温度升高而引起的温升电压VT(v)及反充二极管P-N结的压降VD(V)所造成的影响,则可计算出太阳能电池阵列的工作电压VP(V),由太阳电池阵列工作电源IP(A)与工作电压VP(V),便可决定平板式太阳能板发电功率WP,从而设计出太阳能板容量,由设计出的容量WP与太阳能电池阵列工作电压VP,确定硅电池平板的串联块数与并联组数7。太阳能电池阵列的具体设计步骤如下:计算负载24h消耗容量P。P=H/V()V负载额定电源选定每天日照时数T(H)。计算太阳能阵列工作电流。IP=P(1+Q)/T()Q按阴雨期富余系数,Q=0.211.00确定蓄电池浮充电压VF。镉镍()和铅酸()蓄电池的单体浮充电压分别为1.41.6V和2.2V。太阳能电池温度补偿电压VT。VT=2.1/430(T-25)VF()计算太阳能电池阵列工作电压VP。VP=VF+VD+VT()其中VD=0.50.7,约等于VF太阳电池阵列输出功率平板式太阳能电板。WP=IPUP()根据VP、WP在硅电池平板组合系列表格,确定标准规格的串联块数和并联组数。太阳电池阵列的伏安特性如图5。由图可知,该伏安特性曲线具有强烈的非线性。太阳电池阵列的额定功率是在以下条件下定义的:当日射S=l000W;太阳电池温度T=25;大气质量AM=1.5时,太阳电池阵列输出的最大功率便定义为它的额定功率。太阳电池阵列额定功率的单位为“峰瓦”,记以“WP”。当日射S1000W时。图4 太阳电池阵列的伏安特性曲线温度和日照强度的变化对太阳电池的伏安特性都有影响,在仅改变日照强度而保持其它条件(如太阳电池温度和大气质量等)不变的情况下。计算出每天消耗的瓦时数(包括逆变器的损耗): 逆变器的转换效率为90,则当输出功率为100W时,则实际需要输出功率应为100W/90=111W;若按每天使用8小时,则耗电量为111W*8小时=888Wh。按每日有效日照时间为6小时计算,再考虑到充电效率和充电过程中的损耗,太阳能电池板的输出功率应为888Wh/6h/70%=210W。其中70是充电过程中,太阳能电池板的实际使用功率。心得体会: 通过这次课程设计我了解到新能源的利用,虽然我只负责光电转换部分,但是风光互补发电系统的设计大体原理已经了然于胸,尤其是光电转换部分的原理与结构。对未来电源的发展充满信息。同时我认为我们的工作是一个团队的工作,团队需要个人,个人也离不开团队,必须发扬团结协作的精神。某个人的离群都可能导致导致整项工作的失败。实习中 只有一个人知道原理是远远不够的,必须让每个人都知道,否则一个人的错误,就有可能导致整个工作失败。团结协作是我们实习成功的一项非常重要的保证。而这 次实习也正好锻炼我们这一点,这也是非常宝贵的。 对我而言,知识上的收获重要,精神上的丰收更加可喜。挫折是一份财富,经历是一份拥有。这次课程设计必将成为我人生旅途上一个非常美好的回忆!2.3风力发电负责人:刘楠楠风力发电部分是利用风力机将风能转换为机械能,通过风力发电机将机械能转换为电能,再通过控制器对蓄电池充电,经过逆变器对负载供电20世纪90年代中后期,在世界范围内形成了一股风力发电热,风力发电量增长速度居全球之首。全世界风力发电迅猛发展的原因主要有一下几个:第一,风力发电技术比较成熟。近20年来,美国、丹麦等国家投入了大量的人力、物力和财力研究可以商业运营的风力机,取得了突破性的进展。可利用率从原来的50%提高到98%,风能利用系数超了40%。由于采用计算机技术,实现了风机自诊断功能,安全保护措施更加完善,并且实现了单机独立控制、多机群控和遥控,完全可以无人职守。现代风力机技术是现代高科技的完善组合。目前,百千瓦级风机已经商品化,投入批量生产,兆瓦级机组也正小批量生产。第二,风力发电具有经济性。目前据美国能源部2000年统计,全世界风力发电机组的单位造价已降为1000美元/KW,单位发电成本为47美分/kWh;而火力发电单位造价为700800美元/KW,单位发电成本为58美分/kWh。第三,全球有丰富的风能资源。据统计全球风能潜力约为目前全球用电量的5倍。美国0.6%的陆地面积安装了风力发电机,便可以满足美国目前电力需求的20%。第四,政府的优惠政策。美国政府为风力机行业提供40%的信贷;德国政府也给风力机投资者提供资助,资助金额最高达单台风力机投资的60%;丹麦政府对风力机投资者提供资助,20世纪80年代初期为30%,以后逐年减少,到1990年资助完全取消。这些优惠政策,促进了风力商品化进程,这也是以上3个国家能成为世界上风电生产大国的一个主要原因。第五,风力发电是实现人类可持续发展的需要。随着现代工业的飞速发展,人类对能源的需求明显增加,而地球上可利用的常规能源日趋匮乏。据专家预测,煤炭还可以开采221年,石油还可以开采39年,天然气只能用60年。国际能源专家预言:21世纪是风力发电的世纪。绿色能源风力发电将为人类最终解决能源问题带来新的希望。风力发电原理 风力发电的原理,是利用风力带动风车叶片旋转,再透过增速机将旋转的速度提升,来促使发电机发电。依据目前的风车技术,大约是每秒三公尺的微风速度(微 风的程度),便可以开始发电。风力发电正在世界上形成一股热潮,因为风力发电没有燃料问题,也不会产生辐射或空气污染。小型风力发电系统效率很高,但它不是只由一个发电机头组成的,而是一个有一定科技含量的小系统:风力发电机+充电器+数字逆变器。风力发电机由机头、转体、尾翼、叶片组成。每一部分都很重要,各部分功能为:叶片用来接受风力并通过机头转为电能;尾翼使叶片始终对着来风的方向从而获得最大的风能;转体能使机头灵活地转动以实现尾翼调整方向的功能;机头的转子是永磁体, 定子绕组切割磁力线产生电能。风力发电机因风量不稳定,故其输出的是1325V变化的交流电,须经充电器整流,再对蓄电瓶充电,使风力发电机产生的电 能变成化学能。然后用有保护电路的逆变电源,把电瓶里的化学能转变成交流220V市电,才能保证稳定使用。机械连接与功率传递水平轴风机桨叶通过齿轮箱及其高速轴与万能弹性联轴节相连,将转矩传递到发电机的传动轴,此联轴节应按具有很好的吸收阻尼和震动的特性,表现为吸收适量的径向、轴向和一定角度的偏移,并且联轴器可阻止机械装置的过载。另一种为直驱型风机桨叶不通过齿轮箱直接与电机相连风机电机类型发电机结构、工作原理及电路图在此所提出的系统采用蓄电池组为励磁功供电,并在蓄电池组合励磁绕组之间串联励磁调节器。其电路图如图示。发电机的定子由定子铁心和 定子绕组组成,定子绕组为三相,Y型连接,放在定子铁芯内圆槽内。转子由转子铁芯、转子绕组(即励磁绕组)和转子轴组成,转子铁芯可做成凸极式或形,一般都用爪形磁极,转子励磁绕组的两端接到滑环上,通过与滑环接触的电刷与硅整流器的直流输出端相连,从而获得直流励磁电流。7串联励磁调节器独立运行的小型风电机组的风力机叶片多数是固定桨距的,当风力变化时风力机转速随之变化,与风力机相连的发电机的转速也随之变化,因而发电机的出口电压也会产生波动,这将导致硅整流器输出的直流电压及发电机励磁电流的变化,并造成励磁磁场的变化,这样又造成发电机出口电压的波动。这种连锁反应是的发电机的出口电压的波动范围不断增加。显而易见,如果电压的波动得不到控制,在向负载供电的情况下,将会影响供电质量,甚至损坏用电设备。此外独立运行的风力发电系统都带有蓄电池组,电压的波动会导致蓄电池组的过充电,从而降低蓄电池组的使用寿命。为了消除发电机输出端电压的波动,该硅整流交流发电机配有励磁调节器,如图所示,励磁调节器由电压继电器V1、电流继电器I1、逆流继电器I2及其所控制的动断触电V1、I1和动合触电I2以及电阻R2等组成。励磁调节器的作用是使发电机能自动调节其励磁电流(即励磁磁通)的大小,来抵消因风速变化而导致的发电机转速变化对发电机端电压的影响。当发电机转速较低,发电机端电压低于额定值时,电压继电器V1不动作,其动断触点V1闭合,硅整流器输出端电压直接施加在励磁绕组上,发电机属于正常励磁状态;当风速加大,发电机转速增高,发电机端电压高于额定电压时,动断触电V1断开,励磁回路中被串入了电阻R2,励磁电流及磁通随之减小,发电机输出端电压随之下降;当发电机电压降至额定值时,触点V1重新闭合,发电机恢复到正常励磁状态。电压继电器工作时发电机端电压与发电机转速的关系如图所示。发电机端电压与发电机转速的关系风力发电机组运行时,当用户投入的负载过多时,可能出现负载电流过大超过额定值的状况,如果不加以控制,使发电机过负荷运行,会对发电机的使用寿命有较大的影响,甚至损坏发电机的定子绕组。电流继电器的作用是为了抑制发电机过负荷运行。电流继电器I1的动断触点I1串接在发电机的励磁回路中,发电机输出的负荷电流则通过电流继电器的绕组;当发电机的输出电流低于额定值时,继电器不工作,动断触点I1闭合,发电机属于正常励磁状态;当发电机输出电流高于额定值时,动断触点I1断开,电阻R2被串入励磁回路,励磁电流减小,从而降低了发电机输出端的电压,并减小了负载电流。电流继电器工作时,发电机负载电流与发电机转速的关系如图所示。发电机负载电流与发电机转速的关系为了防止无风或风速太低时,蓄电池组向发电机励磁绕组送电,及蓄电池组由充电运行变为反响放电状态,这不仅会消耗蓄电池组所储电能,还可能烧毁励磁绕组,因此在励磁调节器装置内,还装有逆流继电器I2。发电机正常工作时,逆流继电器的电压线圈及电流线圈内流过的电流产生的吸力是动合触点I2闭合;当风速太低,发电机端电压低于蓄电池组电压时,继电器电流线圈瞬间流过反向电流,此电流产生的磁场与电压线圈内流过的电流产生的磁场作用相反,而电压线圈内流过的电流由于发电机电压下降也减小了,由其产生的磁场也减弱了,故由电压线圈及电流线圈内电流所产生的总磁场的吸力减弱,是的动合触点I2断开,从而断开了蓄电池想发电机励磁绕组送电的回路。采用励磁调节器的硅整流交流发电机,与永磁发电机比较,其特点是能随风速变化自动调节输出端电压,防止产生对蓄电池组过充电,延长蓄电池组的使用寿命;同时还实现了对发电机的过负荷保护,但由于励磁调节器的动断、动合触点动作频繁,需对出头材质及断弧性能做适当的处理。而且用该交流发电机进行发电时,发电机的转速必须达到在该转速下的电压时才能对蓄电池组充电。由于自然界风力的不稳定性,交流发电机输出的是不稳定的交流电,频率和幅值都在不断地变化,而用户需要的是正常频率(即50HZ)的稳定交流电,因此必须进行ACDCAC变换,即先经过整流变成直流电,之后在经过你变电路将之变成标准的交流电。如果电能足够充足的话或者空载时还可以将多余的直流电储存在蓄电池组内。电路图和工作原理 目前在所有的整流电路中采用最广泛的是三相桥式全波整流电路,本系统亦采用了该整流电路。 三相桥式全控整流电路 其电路图如图所示,习惯将阴极连接在一起的3个二极管(VD1、VD3、VD5)称为共阴极组;阳极连在一起的3个二极管(VD2、VD4、VD6)称为共阳极组。此外,习惯上希望二极管按照从16的顺序导通,为此将二极管按照图示顺序编号,按此编号,二极管的导通顺序为VD1、VD2、VD3、VD4、VD5、VD6。该电路中,对于共阴极组的3个二极管,阳极所接交流电压值最高的一个导通。而对于共阳极组的3个二极管,则是阴极所接交流电压值最低的导通。这样任意时刻共阴极组与共阳极组中各有一个二极管处于导通状态,施加于负载(或者蓄电池组)的电压为某一线电压。电路工作波形如图所示。电路工作波形从相电压波形看,共阴极组二极管导通时,整流输出电压为相电压再正半周的包络线;共阳极组导通时,整流输出电压为相电压在负半周的包络线。总的整流输出电压是两条包络线见的差值,将其对应到线电压波形上,即为线电压在正半周的包络线。心得体会 这次课程设计由我负责风力发电部分,前期的资料查询和搜集,让我对这风光互补发电这优势互补洁净有效的发电方式有个一定的了解,科技改变人类的生活,科技让我们充分利用资源。本次课程设计进行了明确的分工,小组成员之间分工合作,让我们在了解知识巩固所学内容的同时学会了与人相处,为我们以后步入工作岗位做好铺垫。2.4控制部分控制部分根据日照强度、风力大小及负载的变化,不断对蓄电池组的工作状态进行切换和调节:一方面把调整后的电能直接送往直流或交流负载。另一方面把多余的电能送往蓄电池组存储。发电量不能满足负载需要时,控制器把蓄电池的电能送往负载,保证了整个系统工作的连续性和稳定性。控制器的工作原理太阳能光伏、风力发电控制器是对光伏电池板和风力发电机所发的电能进行调节和控制,一方面把调整后的能量送往直流负载或交流负载,另一方面把多余的能量按蓄电池的特性曲线对蓄电池组进行充电,当所发的电不能满足负载需要时,控制器又把蓄电池的电能送往负载。蓄电池充满电后,控制器要控制蓄电池不被过充。当蓄电池所储存的电能放完时,控制器要控制蓄电池不被过放电,保护蓄电池。控制器采用PWM无级卸载方式控制风机和太阳能电池对蓄电池进行智能充电。在太阳电池板和风力发电机所发出的电能超过蓄电池存储量时,控制系统必须将多余的能量消耗掉。普通的控制方式是将整个卸荷全部接上,此时蓄电池一般还没有充满,但能量却全部被消耗在卸荷上,从而造成了能量的浪费。有的则采用分阶段接上卸荷,阶段越多,控制效果越好,但一般只能做到五六级左右,所以效果仍不够理想。最好的控制方式是采用PWM(脉宽调制)方式进行无级卸载,即可以达到上千级的卸载。所以,在正常卸载情况下,可确保蓄电池电压始终稳定在浮充电压点,而只是将多余的电能释放到卸荷上。从而保证了最佳的蓄电池充电特性,使得电能得到充分利用。 由于蓄电池只能承受一定的充电电流和浮充电压,过电流和过电压充电都会对蓄电池造成严重的损害。风光互补控制器通过单片机实时检测蓄电池的充电电压和充电电流,并通过控制风机充电电流和光伏充电电流来限制蓄电池的充电电压和充电电流,确保蓄电池既可以充满,又不会损坏。从而确保了蓄电池的使用寿命。 风光互补控制器采用液晶显示蓄电池电压和充电电流,使得用户能够直观了解蓄电池的电压状态,从而使产品设计更加人性化。 数字化智能控制,核心器件采用功能强大的单片机进行控制,使得外围电路结构简单,且控制方式和控制策略灵活强大,从而确保了优异的性能和稳定性。 另外,风光互补控制器具有完善的保护功能,包括:防雷、太阳能防反充、过电压自动刹车、蓄电池反接和开路保护等。核心控制元件采用美国原装微控制器,功率器件则采用优质的美国原装IR器件。设备充电效率高,空载损耗低。经大量实践证明,该系统运行安全、稳定、可靠,使用寿命长。具有较高的性能价格比。 风光互补控制器是风光互补系统的核心部件,它具有风机充电管理、太阳能充电管理、风机转速检测及控制、输出控制管理四大功能,是整个系统的中心枢纽。它具有蓄电池过充/过放保护功能、蓄电池防反接保护、太阳能电池防反充保护、太阳能电池防反接保护、负载输出短路保护、输出光控开-时控关-光控关、风电整流稳压功能、风机大风卸荷保护、风速检测及风机转速调整等功能。其工作原理如图所示。风力发电机经三相整流桥后变为直流电,与MOS开关控制管和大功率电阻相连,主控电路通过风机电压检测电路来检测风机整流后的电压。当风机电压达到设定点时,主控电路发出PWM信号,控制MOS管的通断,从而实现控制大功率电阻接入风机电路的时间。大功率电阻本身具有卸荷的功能,可以使风力发电机多余的电量转化为热能消耗掉,当风机电路中接入大功率电阻时,风机转速会明显下降,转速下降其输出功率就会降低,对应的电压和电流都会减小。通过不断捕捉风机电压参数,经主控电路收集分析,产生随风机转速变化所对应的PWM信号,控制大功率电阻在风机电路的接入状态,从而使风机转速维持在一个相对稳定的范围之内,其功率、电压、电流也会相对稳定,对于整个系统充电控制和安全性能的提升,都有显著的效果。 控制器的技术要求:1、 控制器光伏充电电路应满足以下技术要求 光伏充电电路可承受的最大电压为太阳能电池组件额定电压的1.5倍 光伏充电电路可承受最大电流为太阳电池组件短路电流的1.5倍 光伏充电电路电压降1.2V 应有防止反接的电路保护 应具有防止蓄电池通过太阳能电池组件反向放电的保护功能2、 控制器应具有风力发电机组充电输入端、光伏充电电路输入端、蓄电池及地端、逆变器接线段的明显标志。3、 在多雷区或者特殊环境中使用的控制器应有防雷措施。4、 控制器整机与风力发电充电电路应符合JB/T6939.1要求。电性能要求:当系统的直流电压在额定电压值的90%-120%范围变化时,系统的交流输出频率应保持在50Hz2.5Hz范围内,即频率稳定度的5%。输出为额定功率,当系统的直流电压在额定值的90%-120%范围内变动时,系统交流输出电压变化范围不超过额定值的10%。输出波形为正弦波的系统,正弦波的失真度不超过5%。系统的保护功能 蓄电池欠压保护 蓄电池过充保护短路保护过负荷保护系统应器 风力发电机组充电显示 太阳电池组件充电显示 蓄电池电压状态显示控制器、逆变器工作正常显示各种保护状态显示系统显示可利用控制器、逆变器的显示,也可以独立设置。应在说明书中加以明确。除蓄电池电压状态应设置精度较高的电压表显示外,其余显示可使用各种显示器。心得体会通过这次课程设计,我学习到了风光互补发电系统设计的结构和原理,了解了心能源在现代社会中的现状及将来的发展趋势,特别是在控制部分,我对控制部分的具体功能及实现保证在出现最大空载电压时,系统内所有电器设备包括系统外部的用电器均能够的到有效保护。方式有了较深入的了解,从结构到系统流程,到一些软硬件的实施,查看前人经验总结,剖析他们对风光互补这一理念的理解,让我受益匪浅,对日后我学习的方向及工作都有很大的启示意义。同时我们组成员的共同努力也让我深刻的体会到了团队的力量,相信不管什么困难,在团队的力量下,一切困难皆可克服。有有效防止风力发电机组空载电压冲击措施,系统的显示风光互补发电系统蓄电池的相关问题风光互补发电系统与单一风电系统和光电系统相比具有供电的连续性好、稳定性和可靠性高等特点,风光互补发电系统是相对较好的独立电源系统,此系统就是利用风和光两种自然能源相互补充发电,由太阳能电池板与风力发电机发电,经蓄电池充电,给负载供电的一种新型能源。它既不消耗任何矿物燃料,又完成了对自然能源的合理利用。蓄电池在此系统结构中起到的作用是很重要的。对于风光互补发电系统中的蓄电池有以下方面的研究:一、蓄电池的工作原理普通铅酸蓄电池用填满海绵状铅的铅板作负极,填满二氧化铅的铅板作正极,并用1.28的稀硫酸作电解质。在充电时,电能转化为化学能,放电时化学能又转化为电能。电池在放电时,金属铅是负极,发生氧化反应,被氧化为硫酸铅;二氧化铅是正极,发生还原反应,被还原为硫酸铅。电池在用直流电充电时,两极分别生成铅和二氧化铅。移去电源后,它又恢复到放电前的状态,组成化学电池。铅蓄电池是能反复充电、放电的电池,叫做二次电池。它的电压是2V,通常把三个铅蓄电池串联起来使用,电压是6V。汽车上用的是6个2铅蓄电池串联成12V的电池组。铅蓄电池在使用一段时间后要补充蒸馏水,使电解质保持含有2228的稀硫酸。 放电时,电极反应为:PbO2 + 4H+ + SO42- + 2e- = PbSO4 + 2H2O 负极反应: Pb + SO42- - 2e- = PbSO4 总反应: PbO2 + Pb + 2H2SO4 = 2PbSO4 + 2H2O 二、蓄电池的选择原则首先是重量轻、体积小、能量转换率高、自放电慢、充放电循次数多(即使用寿命长)等。其次,还有些特殊要求如低温时能大电流放电、维护简单或无需维护、自放电(析氢)特别慢等。三、蓄电池的工作特性蓄电池的使用,最重要的是有效利用其充放电特性。有效、科学地使用蓄电池,不仅对提高其使用效率、延长其使用寿命十分关键,同时也可以提高整个系统的工作效率。四、蓄电池充电状态的检测通过对蓄电池充电状态的检测,可以有效的利用蓄电池的充放电,还能选择最适合的充电方法。所遇到的问题,当系统处于温度较高时容易出现蓄电池容量未满却已不能充入的现象,即“虚满”,这样就很难检测出蓄电池的准确荷电状态,影响整个系统的正常工作。应对此问题,采取离线式检测方法:蓄电池的电动势为其中:E电池电动势,(V) E0所有反应物的活度或压力等于1时的电动势,称为标准电动势(V)。R摩尔气体常数;T温度,(K);F法拉第常数;n电化学反应中的电子得失数目。电动势与硫酸浓度有关,也就是与荷电状态有关。而蓄电池的开路电压在数值上接近电动势。蓄电池的稳态开路电压与其荷电状态有良好的线性关系。因此,由蓄电池的开路电压可以估算出其荷电状态。五、蓄电池的参数1.蓄电池单独工作天数在特殊气候条件下,蓄电池允许放电达到蓄电池所剩容量占正常额定容量的20%。2.蓄电池每天放电量对于日负载稳定且要求不高的场合,日放电周期深度可限制在蓄电池所剩容量占额定容量的80%。3蓄电池的容量一般在选蓄电池容量时,只要蓄电池容量大于太阳能发电板峰值电流的25倍,则蓄电池在充电时就不会造成失水。4.蓄电池自身漏掉的电能随着电池使用时间的增长及电池温度的升高,自放电率会增加。对于新的电池自放电率通常小于容量的5%,但对于旧的质量不好的电池,自放电率可增至每月10%15%。5. 蓄电池的额定容量为C,单位安时(Ah),它是放电电流安(A)和放电时间小时(h)的乘积。经过实践,取容量为12V/200Ah;采用全密闭免维护12V铅酸蓄电池,由于蓄电池放电不能低于10V充电不高于16V。 蓄电池的额定容量心得体会为期一周的课程设计结束了,经过几天的学习和锻炼,我从中受益匪浅。首先,通过查找资料我懂得了风光互补发电系统是相对于单一的风力发电系统和太阳能发电系统,其具有连续性好,稳定性强,无污染,节省能源等许多优点。我也极大的锻炼了自己的查找资料的能力。另外,我知道完成一件事情靠一个人的能力是不行的,需要团队合作精神。每一位的组员都有自己的特点,我们大家共同努力,完成了风光互补发电系统的发展前景和存在的问题。我在本次课程设计中,主要负责蓄电池的资料搜索。蓄电池的选取是相当重要的,其将风力和光能转化的电力存储在蓄电池中,通过充放电来维持系统的运行和稳定。本次课程设计将我们在大学中所学的知识结合起来,运用到实际中去,让我们把理论运用到实际中去。为我们以后的毕业设计打下了一定的基础,在此,我们也非常感谢指导老师在本次课程设计提出的意见和帮助。供电部分逆变器及负载的设计负责人:高全风光互补发电系统的供电部分:由一台或者几台逆变电源组成,可把蓄电池中的直流电能变换成标准的220V交流电能,供给各种用电器,保证交流电负载设备的正常使用。同时还具有自动稳压功能,可改善风光互补发电系统的供电质量。逆变电源的原理 利用晶闸管电路把直流电转变成交流电,这种对应于整流的逆向过程,定义为逆变。例如:应用晶闸管的电力机车,当下坡时使直流电动机作为发电机制动运行,机车的位能转变成电能,反送到交流电网中去。把直流电逆变成交流电的电路称为逆变电路。在特定场合下,同一套晶闸管变流电路既可作整流,又能作逆变。变流器工作在逆变状态时,如果把变流器的交流侧接到交流电源上,把直流电逆变为同频率的交流电反送到电网去,叫有源逆变。如果变流器的交流侧不与电网联接,而直接接到负载,即把直流电逆变为某一频率或可调频率的交流电供给负载,则叫无源逆变。交流变频调速就是利用这一原理工作的。有源逆变除用于直流可逆调速系统外,还用于交流饶线转子异步电动机的串级调速和高压直流输电等方面。 VVIGBT diverTMS320F2812VDCIacVac 逆变器原理框图控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。 实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。PI调节P调节PWM产生+-+-+逆变器控制框图逆变器的控制框图中参考电压Vref与光伏电池实际输出电压VDC相比较后,误差经PI调节得到电流指令I*,再与正弦波形相乘得到正弦指令Iref,Iref与实际输出的电流相比较后,误差经P调节后得到的值(物理意义上就相当于逆变器输出侧电感上产生的电压)与网压Vac(t)相加得到的波形与三角波比较,便产生了4路PWM波控制逆变器开关管的通断,这样就实现了光伏电池输出电压基本工作在Vref附近,系统输出正弦电流波形幅值为I*。光伏逆变器是太阳能光伏发电系统的主要部件和重要组成部分,为了保证太阳能光伏发电系统的正常运行,对光伏逆变器的正确配置选型显得成为重要。逆变器的配置除了要根据整个光伏发电系统的各项技术指标并参考生产厂家提供的产品样本手册来确定。重点技术指标:1、额定输出功率 额定输出功率表示光伏逆变器向负载供电的能力。额定输出功率高的光伏逆变器可以带更多的用电负载。选用光伏逆变器时应首先考虑具有足够的额定功率,以满足最大负荷下设备对电功率的要求,以及系统的扩容及一些临时负载的接入。当用电设备以纯电阻性负载为生或功率因数大于0.9时,一般选取光伏逆变器的额定输出功率比用电设备总功率大10%15%。 2、输出电压的调整性能输出电压的调整性能表示光伏逆变器输出电压的稳压能力。一般光伏逆变器产品都给出了当直流输入电压在允许波动范围变动时,该光伏逆变器输出电压的波动偏差的百分率,通常称为电压调整率。高性能的光伏逆变器应同时给出当负载由零向100%变化时,该光伏逆变器输出电压的偏差百分率,通常称为负载调整率。性能优良的光伏逆变器的电压调整率应小于等于3%,负载调整率就小于等于6%。3、整机效率 整机效率表示光伏逆变器自身功率损耗的大小。容量较大的光伏逆变器还要给出满负荷工作和低负荷工作下的效率值。一般KW级以下的逆变器的效率应为80%85%;10KW级的效率应为85%90%;更大功率的效率必须在90%95%以上。逆变器效率高低对光伏发电系统提高有效发电量和降低发电成本有重要影响,因此选用光伏逆变器要尽量进行比较,选择整机效率高一些的产品。 4、启动性能 光伏逆变器应保证在额定负载下可靠启动。高性能的光伏逆变器可以做到连续多次满负荷启动而不损坏功率开关器件及其他电路。小型逆变器为了自身安全,有时采用软启动或限流启动措施或电路。 以上几条是作为光伏逆变器设计和选购的主要依据,也是评价光伏逆变器技术性能的重要指标。多重串联型逆变器多重串联型逆变器应用于电动汽车有诸多优点。串联结构输出电压矢量种类大大增加,增强了控制的灵活性,提高了控制的精确性;同时降低了电机中性点电压的波动。逆变器的旁路特点可提高充电和再生制动控制的灵活性。 随着人们对城市环境的日益关切,电动汽车的发展得到了一个难得的机遇。在城市交通中,电动大客车由于载量大,综合效益高,成为优先发展的对象。电动大客车大都采用三相交流电机,由于电机功率大,三相逆变器中的器件需要承受高电压和大电流应力的作用,较高的dv/dt又使电磁辐射严重,并且需要良好的散热。 而采用多重串联型结构的大功率逆变器则降低了单个器件承受的电压应力,降低了对器件的要求;降低了dv/dt值,减少了电磁辐射,器件的发热也大大减少;由于输出电平种类增加,控制性能更好。 多重串联型逆变器适用于大功率的电动汽车驱动系统。采用多重串联型结构,可降低多个蓄电池串联带来的危险,降低器件的开关应力和减少电磁辐射。但需要的电池数增加了2倍。 多重串
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 独立混合储能电站项目社会稳定风险评估报告
- 工业污水处理厂项目社会稳定风险评估报告
- 标准果胶建设项目施工方案
- 基础工程本科试题及答案
- 污水处理厂提标改造工程建筑工程方案
- 绿色纺织新材料生产线项目施工方案
- 电工圆铝杆生产线建设项目招商引资报告
- 城市绿化监理合同延期与养护责任追加协议
- 祁菊离婚案财产分配及子女抚养权协议书
- 离婚协议书:婚姻关系解除及财产分割、子女抚养协议
- 2025年中考数学真题知识点分类汇编之二次函数(四)
- 2025年中国地震局事业单位公开招聘考试历年参考题库含答案详解(5卷)
- 劳动保障监察条例课件
- 呼吸科出科考试题临床及答案2025版
- 仓储能力及管理办法
- ROCK1蛋白:解锁食管鳞癌奥秘的关键密码
- 心理健康教育:男生女生
- 《大中型企业安全生产标准化管理体系要求》
- 政策变迁课件
- 电机维护检修培训课件
- 物理课程与教学论 课件 第五章 物理教学模式、方法与策略
评论
0/150
提交评论