



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十五讲 奇数与偶数通常我们所说的“单数”、“双数”,也就是奇数和偶数,即1,3,5,是奇数,0,2,4,6,是偶数 用整除的术语来说就是:能被2整除的整数是偶数,不能被2整除的整数是奇数通常奇数可以表示为2k+1(或2k-1)的形式,其中k为整数,偶数可以表示为2k的形式,其中k是整数奇数和偶数有以下基本性质:性质1 奇数偶数性质2 奇数奇数=偶数,偶数偶数=偶数,奇数偶数=奇数性质3 奇数奇数=奇数,偶数偶数=偶数,奇数偶数=偶数性质4 奇数个奇数之和是奇数;偶数个奇数之和是偶数;任意有限个偶数之和为偶数性质5 若干个奇数的乘积是奇数,偶数与整数的乘积是偶数性质6 如果若干个整数的乘积是奇数,那么其中每一个因子都是奇数;如果若干个整数的乘积是偶数,那么其中至少有一个因子是偶数性质7 如果两个整数的和(或差)是偶数,那么这两个整数的奇偶性相同;如果两个整数的和(或差)是奇数,那么这两个整数一定是一奇一偶性质8 两个整数的和与差的奇偶性相同性质9 奇数的平方除以8余1,偶数的平方是4的倍数.性质1至性质6的证明是很容易的,下面我们给出性质7至性质9的证明性质7的证明 设两个整数的和是偶数,如果这两个整数为一奇一偶,那么由性质2知,它们的和为奇数,因此它们同为奇数或同为偶数同理两个整数的和(或差)是奇数时,这两个数一定是一奇一偶性质8的证明 设两个整数为X,y因为(x+y)+(x-y)=2x为偶数,由性质7便知,x+y与x-y同奇偶性质9的证明 若x是奇数,设x=2k+1,其中k为整数,于是x2=(2k+1)2=4k3+4k+1=4k(k+1)+1因为k与k+1是两个连续的整数,它们必定一奇一偶,从而它们的乘积是偶数于是,x2除以8余1若y是偶数,设y=2t,其中t为整数,于是y2=(2t)2=4t2所以,y2是4的倍数例1 在1,2,3,1998中的每一个数的前面,任意添上一个“+”或“-”,那么最后运算的结果是奇数还是偶数?解 由性质8知,这最后运算所得的奇偶性同1+2+3+1998=9991999的奇偶性是相同的,即为奇数例2 设1,2,3,9的任一排列为a1,a2,a9.求证:(a1-1)(a2-2)(a9-9)是一个偶数证法1 因为(a1-1)+(a2-2)+(a3-3)+(a9-9)(a1+a2+a9)-(1+2+9)=0是偶数,所以,(a1-1),(a2-2),(a9-9)这9个数中必定有一个是偶数(否则,便得奇数个(9个)奇数的和为偶数,与性质4矛盾),从而由性质5知(a1-1)(a2-2)(a9-9)是偶数证法2 由于1,2,9中只有4个偶数,所以a1,a3,a5,a7,a9中至少有一个是奇数,于是,a1-1,a3-3,a5-5,a7-7,a9-9至少有一个是偶数,从而(a1-1)(a2-2)(a9-9)是偶数例3 有n个数x1,x2,xn,它们中的每一个数或者为1,或者为-1如果x1x2+x2x3+xn-1xn+xnx1=0, 求证:n是4的倍数证 我们先证明n=2k为偶数,再证k也是偶数由于x1,x2,xn。的绝对值都是1,所以,x1x2,x2x3,xnx1的绝对值也都是1,即它们或者为+1,或者为-1设其中有k个-1,由于总和为0,故+1也有k个,从而n=2k下面我们来考虑(x1x2)(x2x3)(xnx1)一方面,有(x1x2)(x2x3)(xnx1)(-1)k,另一方面,有(x1x2)(x2x3)(xnx1)=(x1x2xn)2=1所以(-1)k=1,故k是偶数,从而n是4的倍数例4 设a,b是自然数,且满足关系式(11111+a)(11111-b)=123456789求证:a-b是4的倍数证 由已知条件可得11111+a与11111-b均为奇数,所以a,b均为偶数又由已知条件11111(a-b)=ab+2468,ab是4的倍数,2468=4617也是4的倍数,所以11111(a-b)是4的倍数,故a-b是4的倍数.例5 某次数学竞赛,共有40道选择题,规定答对一题得5分,不答得1分,答错倒扣1分证明:不论有多少人参赛,全体学生的得分总和一定是偶数证 我们证明每一个学生的得分都是偶数设某个学生答对了a道题,答错了b道题,那么还有40-a-b道题没有答于是此人的得分是5a+(40-a-b)-b=4a-2b+40,这是一个偶数所以,不论有多少人参赛,全体学生的得分总和一定是偶数例6 证明15块41的矩形骨牌和1块22的正方形骨牌不能盖住88的正方形.证 将88正方形的小方格用黑、白色涂色(如图162)每一块41骨牌不论怎么铺设都恰好盖住两个白格,因此
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年稀土资源战略地位提升与全球市场竞争格局演变趋势报告
- 健身会籍顾问客服岗位职责
- 幼儿园教研健康教育开展计划
- 小学语文教研组教学方法改进计划
- 房产电子商务平台运营总结及计划
- 2025年微电网储能技术创新应用:储能设备与系统优化报告
- 释放农产品消费新潜能的策略及实施路径
- 县域医共体医保支付方式改革的现状分析
- 小学心理健康教育与德育的协同路径
- 茶楼员工手册和规章制度
- 2025年江西南昌市西湖城市建设投资发展集团有限公司招聘笔试参考题库附带答案详解
- 职业教育产教融合型数字化教材开发研究
- 文学传播学概论课件
- 第3单元主题活动三《创意玩具DIY》(课件)三年级上册综合实践活动
- 商务英语词汇大全
- 麻醉质量控制专家共识
- 反走私课件完整版本
- 2024-2025学年小学劳动一年级上册人教版《劳动教育》教学设计合集
- You Raise Me Up二部合唱简谱
- 五年级开学第一课
- 雅思初级教程-unit-1-Great-places-to-be
评论
0/150
提交评论