二次根式定义.doc_第1页
二次根式定义.doc_第2页
二次根式定义.doc_第3页
二次根式定义.doc_第4页
二次根式定义.doc_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

九年级数学 第二十一章 二次根式二次根式的定义学习目标:了解二次根式的概念,理解二次根式有意义的条件,并会求二次根式中所含字母的取值范围。理解二次根式的非负性学习重难点:二次根式有意义的条件和非负性的理解和应用学法指导:小组合作交流 一对一检查过关导: u 看书后填空:二次根式应满足两个条件:(1)形式上必须是的形式。(2)被开方数必须是 数。例1.判断下列格式哪些是二次根式? 学:u 代数式有意义应考虑以下三个方面:(1)二次根式的被开方数为非负数。(2)分式的分母不为0.(3)零指数幂、负整数指数幂的底数不能为0例2.当x是怎样实数时,下列各式在实数范围内有意义?1 2 (6)u (1)常见的非负数有: u (2)几个非负数之和等于 0,则这几个非负数都为0.例3.已知:,求a,b的值。u 巩固练习: 1、已知求a,b的值2.已知则的值为 练:1.下列各式中: 其中是二次根式的有 。2.若有意义,则x的取值范围是 。3.已知,则 4.函数中,自变量x的取值范围是()(A) X2 (B) X2 (C) X-2 (D) X-25.若式子有意义,则P(a,b)在第( )象限(A)一 (B)二 (C)三 (D)四6.若则 7.方程,当y0时,m的取值范围是 8.已知,求xy的值展:小组展示成果,提出质疑评: 1. 组内互助,解决质疑并进行小组评价。2.知识方法小结:(交流后填空)(1)二次根式的定义:_(2)二次根式有意义的条件:_(3)二次根式的性质: 是 数,即 0补: 组内再次质疑,组内过关检测,可由组长出题检测并验收。 二次根式的性质学习目标:理解二次根式的性质,并能运用性质学习重难点:二次根式的性质的理解和综合运用学法指导: 先自学质疑,再小组互助,最后请求老师帮助导:u 看书完成填空:1.是一个_ 数 2._(a0)3.4.代数式:用基本运算符号(加、减、乘、除、乘方和开方)把_和表示数的_连接起来的式子,叫做代数式。学:u 在二次根式的运算时,要熟练地利用公式及进行计算例1.计算:(1)(2) (3)(4)例2.实数范围内分解因式:u 二次根式化简:例3.化简:(1) (2) (3) (4)练:1.计算:(1) (2) (3) (4)2.实数范围内分解因式:3.说出下列各式的值:(1) (2) (3) (4) (5)4.已知0x33.计算的结果为()A B C D 4.计算:(1) (2) 5. 在ABC中,BC边上的高h=cm,它的面积恰好等于边长为cm的正方形面积。则BC的长为 6.计算: 7.计算:(1) (2) (3) (4)展:小组展示成果,提出质疑评: 1.组内交流解决质疑,若仍不懂则向老师请教。2.知识归纳:二次根式除法法则及逆用:和补:练习错题补救(由组长负责出题并检查验收过关) 最简二次根式学习目标:理解最简二次根式的概念,并运用其化简,能检验计算结果是否是最简二次根式学习重难点:最简二次根式的运用和判断结果是否是最简二次根式。学法指导:小组合作交流 一对一结对子检查过关。导:u 最简二次根式有如下两个特点:(1)被开方数不含 (2)被开方数中不含开得尽方的 我们把上述两个条件的二次根式,叫做最简二次根式。u 二次根式的计算和化简结果,一般都要化成 二次根式。例1计算:(1) (2) (3)学:u 分式化简:(1)分母有理化之前,要先把分子、分母的二次根式进行化简(2)分母有理化常有两种方法:一是分子、分母都乘以适当的二次根式,二是根据题目的特点,把分母或分子当地分解因式,再约分。例2.化去下列各式分母中的二次根式(1) (2) (3) (4)例3.如图,在RtABC中,C=,AC=2.5cm BC=6cm,求AB长。练:1.下列各式中,最简二次根式的是( ) A B C D 2.将化成最简二次根式为( )A B C D3.已知a=,b=,则a与b的关系是( )A a=b B ab=1 C a+b=0 D ab=-14.下列各式中,变形正确的是( ) A.5个 B 4个 C 3个 D 2个 5把化成最简二次根式为 6.观察下列各式:,请将猜想到的规律用含自然数n(n1)的等式表示出来 7.计算:(1) (2) (3)8.计算:9.如图,在RtABC中,C=900,A=300,AC=2cm,求斜边的长展:小组展示成果,提出质疑评: 1.组内交流解决质疑,若仍不懂则向老师请教。2.知识归纳:分式化简:(1)分母有理化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论