已阅读5页,还剩306页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
自动控制课件 自动控制原理XXXX精细化工有限公司 基本内容第一章控制系统导论第二章控制系统的数学模型第三章线性系统的时域分析法第四章线性系统的根轨迹法第五章线性系统的频域分析法第六章线性系统的校正方法第七章非线性系统分析第八章采样控制系统 第一章控制系统导论第一节自动控制的基本原理 1自动控制技术及应用什么是自动控制 是指在没有人直接参与的情况下利用外加的设备或装置使机器设备或生产过程的某个工作状态或参数自动的按照预定的规律运行 什么是自动控制技术 在现实生活中的各个领域应用自动控制这种方法进行工业生产或其它用途 使之成为一种技术 应用 从工业生产到经济 生物 医学 到航空 导弹 机器人 核动力等高科技领域 水位自动控制系统 工作原理 目的 水位不变 扰动 出水变化 进水压力变化等 人工调节过程 检测水位 与希望高度比较 确定阀门开度与方向 执行 执行 控制阀门 调节进水量 自动控制 2自动控制理论 什么是自动控制理论 研究自动控制共同规律的技术科学 发展初期以反馈理论为基础 主要应用于工业控制 自动控制理论根据研究对象分为 经典控制理论40 50年代形成 适用于SISO 单输入 单输出 系统目标 反馈控制系统的稳定基本方法 传递函数 频率法 PID调节器现代控制理论 60 70年代形成 适用于MIMO 多输入 多输出 系统目标 最优控制基本方法 状态空间表达式 自动控制理论的内容 自动控制理论 经典控制理论 19世纪中叶 20世纪50年代 线性 非线性 根轨迹法 频域法 时域法 采样控制 Z变换法 现代控制理论 60年代以来 状态反馈控制 最优控制 智能控制 预测控制 自适应控制 模糊控制 大系统多层分散控制 什么是反馈 把输出量送回到输入端 并与输入信号相比较产生偏差信号的过程 人取书的反馈控制系统负反馈 反馈信号与输入信号相减 使偏差越来越小 正反馈 反馈信号与输入信号相加 我们通常所说的反馈控制采用负反馈 3反馈控制原理 注意 闭环控制 4反馈控制系统的基本组成 一个完整的控制系统包括被控对象和控制装置两大部分 控制装置由具有一定职能的各种基本元件组成 测量元件 检测被控制的物理量给定元件 给出与期望的被控量相对应的系统输入量比较元件 把被控量的实际值与参据量相比较 得到偏差信号放大元件 将偏差信号进行放大 用以推动执行元件 执行元件 直接推动被控对象 改变其输出量校正元件 为改善系统性能增加的补偿元件 5自动控制系统的基本控制方式 反馈控制方式 按偏差进行控制 减小或消除偏差抑制任何内外扰动对被控量的影响控制精度高 元件多 结构复杂等 5自动控制系统的基本控制方式 开环控制方式 控制装置与被控对象只有顺序作用没有反向联系 输出量对控制作用不产生影响 可以按给定量控制也可以按扰动量控制 典型例子 前馈控制系统 5自动控制系统的基本控制方式 复合控制方式 按偏差控制与按扰动控制结合起来 构成前馈 反馈控制系统 实例 原理 只要浮子不在给定位置上 电机就要工作 也就是说 系统最终不会存在误差 前述水位自动控制系统中 如果用水量增加 减少 则浮子一定要偏离给定位置 必须开大 关小 阀门 第二节自动控制系统示例 系统功能框图描述 控制过程 假设Hc 浮子 测量出Hc 和给定的位置Hg作比较 阀门 Q1 Hc 第三节自动控制系统的分类 按控制方式分 反馈控制 开环控制 复合控制按系统功能分 温度控制 压力控制 位置控制 液位控制等 即被控量类型按元件类型分 机械 电动 气动 液压 生物等按系统性能分 线性与非线性 连续与离散 定常与时变确定与不确定等 按参据量变化规律分 恒值 随动 程序 1线性连续控制系统 控制作用的信号是连续的 控制器通常为模拟电子器件线性微分方程 C t 被控量 r t 系统输入量 a0 an b0 bn是系数 线性定常连续控制系统按输入量的变化规律不同分 恒值控制系统 输入量是一个常值要求被控量等于常值主要研究扰动对被控对象的影响 如温度控制等随动控制系统 输入量的大小不可预知 可能有规律或无规律 要求被控量随之变化 又称跟踪系统 如函数记录仪 电子配钥匙程序控制系统 输入量按预定规律随时间变化g f t 要求被控量迅速准确的复现 如数控机床 部分供水系统 2线性定常离散控制系统 控制作用的信号是断续的或数字量 即在时间上是离散的 采用计算机构成的系统通常都是离散控制系统 差分方程 3非线性控制系统 只要有一个元件的输入输出特性是非线性的 第四节自动控制系统的基本要求 1基本要求的提法稳 快 准稳定性 保证系统正常工作的先决条件 什么是稳定的控制系统 被控量偏离期望值的初始偏差随时间的增长逐渐减小并趋于零 线性系统的稳定性由系统结构所决定 过渡过程系统收到扰动或有输入量时 控制过程不会立即完成 而是有一定的延缓 使被控量恢复期望值或跟踪参据量有一个时间过程 快速性 要求过渡过程的形式和快慢 即动态性能 过渡过程的时间 调节时间 最大振荡幅度 超调量 准确性 过渡过程结束后 被控量达到的稳态值应与期望值一致 稳态误差 衡量控制精度的重要标志 2典型外作用 1 阶跃函数模拟设定值的突然变化 如电源电压突然跳动等 表示t 0时 出现幅值为R的阶跃变化并一直保持下去 R 1时 为单位阶跃函数1 t 即f t R 1 t 一般将阶跃函数作用下系统的响应特性作为评价系统动态性能指标的重要依据 2 斜坡函数 速度函数模拟设定值的连续变化 表示在t 0时刻开始 以恒定的速度R随时间变化 R 1时 为单位斜坡函数t 即f t R t 3 加速度函数 抛物线函数 R 1时 为单位加速度函数t2 2 4 脉冲函数模拟外界的干扰信号 用于分析系统偏离稳态又恢复到稳态的运动过程 两个阶跃函数合成的脉动函数 t0越小矩形的宽度越小高度越大 t0趋于零时 即脉动函数的极限为脉冲函数 宽度为0 高度无穷大 单位脉冲函数 是一个持续时间无限短 脉冲幅度无限大 信号对时间的积分为1的矩形脉冲 5 正弦函数随动控制系统 正弦函数作用下的频率响应是研究性能的重要依据 第二章控制系统的数学模型 1什么是数学模型 描述系统内部物理量之间关系的数学表达式 2数学模型有多种形式 时域数学模型 微分方程 连续系统 差分方程 离散系统 状态方程复域数学模型 传递函数 结构图频域数学模型 频率特性建立控制系统的数学模型是分析和设计控制系统的首要工作 1 拉氏变换的定义 例 f t 1 t 1 t 0时 f t 0 2 t 0时 f t 分段连续 记为 则 3 第一节拉普拉斯变换 1 线性定理 齐次性 叠加性 2 微分定理 当初始值为0时 sF s 对原函数进行一次微分相当于象函数用s乘一次 2 常用拉氏变换定理 当初始值为0时 3 积分定理 对原函数进行一次积分相当于象函数用s除一次 4 初值定理 5 终值定理 6 位移定理 初值定理与终值定理举例 例 结论 根据初值定理和终值定理可直接根据S域的特性分析系统在时域中输入作用瞬时的特性以及稳态情况 终值定理 则 初值定理 3拉普拉斯反变换 由象函数F s 求原函数f t 部分分式展开法 分母因式分解 得 s1 s2 sn是A s 0的根 称为F s 的极点 情况一 F s 有不同极点 这时 F s 总能展开成如下简单的部分分式之和 例题1 求的原函数f t 解 将分母因式分解并按部分分式展开 因此 原函数 分别按照表2 3的17项和15项得 例题2 求的原函数f t 假若F s 有r重极点 而其余极点均不相同 那么 情况二 F s 有重极点 作业 求f t 2 2控制系统的时域数学模型 1线性元件的微分方程例1 图示无源网络 列写以ui t 为输入量 uo t 为输出量的网络微分方程 根据基尔霍夫定律列写回路方程 消去中间变量i t 得到输入输出关系的微分方程 例2 列写图示电枢控制直流电动机的微分方程 电枢电压ua t 为输入量 电动机转速 m t 为输出量 Ra La为电枢电路的电阻和电感 Mc为折合到电动机轴上的总负载转矩 工作实质 电能转化为机械能 直流电动机的运动方程由三部分组成 电枢电路的电压平衡方程 电磁转矩方程 电动机轴上的转矩平衡方程 Cm 电动机转矩系数 Jm fm 电动机和负载折合到电动机轴上的转动惯量和黏性摩擦系数 上述三方程联立消去中间变量ia t Ea Mm t 得到以 m t 为输出量 ua t 为输入量的直流电动机微分方程 在工程应用中La较小 通常忽略不计 如果Ra和Jm也很小可忽略时 此微分方程可简化为 总结 列写元件微分方程的步骤 确定输入 输出量 列写微分方程 消去中间变量 微分方程的标准写法 输出项在左边 输入项在右边 导数项降幂排列 2控制系统微分方程的建立 步骤 画出系统方框图 列写各元件的微分方程 消去中间变量 注意 信号传递的单向性 前后连接的两个元件中 后级对前级的负载效应 负载效应问题 系统的各部分串联连接时 后面部分通常是前面的负载 分成两个独立环节时应考虑其影响 举例 速度控制系统的微分方程 控制系统的主要部件 元件 给定电位器 运放K1 运放K2 功率放大器 直流电动机 减速器 测速发电机 3线性系统的基本特性 线性系统的重要性质就是可以应用叠加原理 叠加性和齐次性 叠加性 若 则 齐次性 应用 两个外作用同时加于系统所产生的总输出等于各个外作用单独作用时分别产生的输出之和 且外作用数值增大若干倍时输出亦相应增大同样的倍数 4线性定常微分方程的求解 目的 用数学的方法定量研究给定输入量和初始条件的系统输出量随时间变化的特性 方法 经典法和拉氏变换法 解 已知网络微分方程 方程两边分别取拉氏变换 得 因电路突然接通电源 故ui t 为阶跃输入 Ui s 1 s 方程两边求拉氏反变换 输入电压产生的输出分量 与初始条件无关 称为零初始条件响应 初始条件产生的输出分量 与输入电压无关 称为零输入响应 统称为网络的单位阶跃响应 利用拉氏变换的初值定理和终值定理可根据Uo s 直接求出uo t 的初始值和终值 总结 拉氏变换法求解线性定常微分方程的过程 1 考虑初始条件 对微分方程的每一项分别进行拉氏变换 转为复变量s的代数方程 2 由代数方程求出输出量拉氏变换函数的表达式 3 对输出量求拉氏反变换 得出输出量的时域表达式 2 3控制系统的复域数学模型 1传递函数的定义和性质 1 定义 零初始条件下 系统输出量的拉氏变换与输入量的拉氏变换之比 线性定常系统的n阶微分方程一般可表示为 在零初始条件下 对微分方程进行拉氏变换 得 根据传递函数的定义得系统的传递函数 例 试求RLC无源网络的传递函数 解 RLC无源网络的微分方程为 零初始条件下 方程两边取拉氏变换 得 由传递函数的定义得RLC无源网络的传递函数为 练习1 已知系统的微分方程为 练习2 已知系统的传递函数为 求在单位阶跃输入作用下系统的输出响应c t 解答 2 性质 传递函数是复变量s的有理真分式函数 具有复变函数的所有性质 m n 且所有系数均为实数 传递函数只取决于系统或元件的结构和参数 与输入量的形式无关 不反映系统内部的任何信息 故可用方框图表示 传递函数与微分方程有相通性 即系数相对应 故零初始条件下 微分运算符与s可置换 传递函数的拉氏反变换是脉冲响应g t 3 零初始条件的含义 零初始条件含义 输入量是在时才作用于系统 因此在时 输入量及其各阶导数均为0 输入量加入系统之前 系统处于稳态 输出量及其各阶导数在时为0 几个重要的拉氏变换 2传递函数的零点和极点 传递函数的分子多项式和分母多项式经因式分解后可写成 式中Zi是传递函数的零点 Pi是传递函数的极点 传递函数的零点和极点可以是实数也可以是复数 K b0 a0是传递系数或根轨迹增益 传递函数的分子多项式和分母多项式经因式分解后也可写成如下因子连乘的形式 式中一次因子对应实数零极点 二次因子对应共轭复数零极点 Tj为时间常数 K bm an是传递系数或增益 例1 已知系统的传递函数为 若输入为单位阶跃函数 即输入的象函数为 则 3传递函数的零点和极点对输出的影响 结论 传递函数的极点就是微分方程的特征根 它决定了系统自由运动的模态 例2 具有相同极点但不同零点的传递函数分别为 结论 传递函数的零点并不形成自由运动的模态 但他们却影响各模态在响应中所占的比重 因而也影响曲线的形状 零初始条件下它们的单位阶跃响应分别为 1 2 G1的零点Z1接近原点 距两个极点较远 两个模态所占的比重大 Z1的作用明显 G2的零点Z2距原点较远 距两个极点均较近 两个模态所占的比重小 Z1的作用明显 自学 单容水槽 双容水槽 电加热炉等 4典型元部件的传递函数 单容对象 热水加热器 多容对象 由两个或多个单容对象之间通过某些关系联系在一起的对象 双容水槽 2 4控制系统的结构图与信号流图 1系统结构图的组成与绘制 1 组成 由对信号进行单向运算的方框和信号流向线所组成 包含四种基本单元 信号线 引出点 比较点 方框 控制系统的结构图是描述系统各环节之间信号传递关系的数学模型 它表示了系统各环节之间的因果关系以及对各变量进行的运算 是控制理论描述复杂系统的一种简便方法 信号线 带有箭头的直线 表示信号的流向 在直线旁标记信号的时间函数或象函数 引出点 或测量点 表示信号引出或测量的位置 从同一位置引出的信号在数值和性质方面完全相同 比较点 或综合点 表示对两个以上的信号进行加减运算 方框 或环节 表示对信号进行的数学变换 方框中写入环节的传递函数 2 绘制 例 绘制无源网络的结构图 2 结构图的等效变换与简化 1 串联连接 前一个环节的输出是后一个环节的输入 结论 串联连接的传递函数为各个环节传递函数的乘积 2 并联连接 输入量相同 输出量等于两个方框输出量的代数和 结论 并联连接的传递函数为各个环节传递函数的和 3 反馈连接 以负反馈为例 闭环传递函数 常用表示 s 表示 4 引出点和比较点的移动a 引出点前移 b 引出点后移 c 比较点前移 d 比较点后移 举例 例1 化简下列方框图 并求系统的传递函数 A B 2 串并联变换 3 反馈联接变换 举例 板书 复习 3 信号流图的组成及性质 信号流图起源于梅森 S J MASON 利用图示法来描述一个和一组线性代数方程 是由节点和支路组成的一种信号传递网络 1 组成及性质节点 表示变量或信号 其值等于所有进入该节点的信号之和 支路 连接两个节点的定向线段 用支路增益 传递函数 表示方程式中两个变量的因果关系 支路相当于乘法器 信号在支路上沿箭头单向传递 表示两节点一支路组成的信号流图 典型的信号流图 5个节点代表5个变量x1 x2 x3 x4 x5 支路增益1 a b c d e f g 左端的变量取决于右端有关变量的线性组合 信号流图把各变量之间的因果关系贯通了起来 2 术语 输入节点 源节点 只有输出支路的节点 代表系统输入变量 输出节点 阱节点 只有输入支路的节点 代表系统输出变量 混合节点 既有输出支路 又有输入支路的节点 前向通路 信号由输入节点到输出节点传递时 每个节点只通过一次的通路 如x1 x2 x3 x4 x5和x1 x2 x5 回路 起点就是终点 并且与其它节点相交不多于一次的闭合通路 如x2 x3 x2 x3 x4 x3 x5 x5不接触回路 回路之间没有公共节点 如x2 x3 x2与x5 x5x3 x4 x3与x5 x5 4 信号流图的绘制 由系统结构图绘制信号流图 结构图的信号线上用小圆圈标志出传递的信号 得到节点 标有传递函数的线段代替方框 得到支路 支路增益为1的相邻节点可以合并 源节点及阱节点除外 比较点之前没有引出点时 在比较点之后设置一节点 比较点之前有引出点时 在比较点和引出点各设一节点 例1 e1 e2 e3 e4 例2 5 梅森增益公式 Pk 第k条前向通路的传递函数 通路增益 P 源节点到阱节点的传递函数 总增益 n为前向通路总数 流图特征式 所有单独回路的传递函数之和 每两个互不接触回路传递函数乘积之和 每三个互不接触回路传递函数乘积之和 例1 只有一个前向通路的情况 e1 e2 e3 e4 1 从源节点到阱节点只有一个前向通路 总增益 2 有三个单独回路 回路增益分别为 3 没有不接触回路 且前向通路与所有回路均接触 故余因子式 4 由梅森增益公式求得系统传递函数 例2 有多个前向通路的情况 3 从源节点到阱节点有三个前向通路 P1 G1G2G3G4G5 1 1P2 G1G6G4G5 2 1P3 G1G2G7 3 1 L1 1 有四个单独回路 回路增益分别为 L1 G4H1L2 G2G7H2L3 G6G4G5H2L4 G2G3G4G5H2 2 有一组互不接触回路 L1和L2 所以 流图特征式 1 L1 L2 L3 L4 L1L2 4 由梅森增益公式求得系统传递函数 e1 e2 e5 e1 e3 e4 e3 e1 e3 e4 e5 e1 e1 e2 e3 e4 e5 e1 R e1 e2 e3 e4 e5 C R e1 e3 e4 e5 C R e1 e2 e5 C 6 闭环系统的传递函数 C s 输出信号 R s 有用输入信号 N s 扰动信号 E s 误差信号 典型反馈控制系统的结构图和信号流图 1 输入信号作用下的闭环传递函数 应用叠加原理 令N s 0 得 进一步求得系统输出量为 2 扰动作用下的闭环传递函数 应用叠加原理 令R s 0 得 进一步求得系统输出量为 R s 和N s 同时作用下的系统输出量为 若 1 则 若 1 则 在一定条件下 系统输出只取决于反馈通路的传递函数及输入信号 与前向通路的传递函数无关 不受扰动作用的影响 若 1 即单位反馈 则 输出近似实现了对输入信号的完全复现 对扰动具有较强的抑制能力 3 闭环系统的误差传递函数 可以由梅森增益公式求得误差传递函数 注意前向通路的确定 也可以将结构图等效变换后求闭环系统的误差传递函数 红色代表回路 蓝色代表前向通道 闭环系统的开环传递函数 闭环系统的开环传递函数 等效为主反馈断开时从输入信号R到反馈信号B的传递函数 总结 拉氏变换及反变换定义 部分分式展开法微分方程 时域数学模型通式 建立 求解传递函数 复域数学模型定义 性质 两种写法结构图与信号流图结构图化简 梅森公式闭环传递函数与开环传递函数 第三章线性系统的时域分析法 所谓时域分析法 就是在时间域内研究控制系统性能的方法 它是通过拉氏变换直接求解系统的微分方程 得到系统的时间响应 然后根据响应表达式和响应曲线分析系统的动态性能和稳态性能 控制系统的时域性能指标 是根据系统在单位阶跃函数作用下的时间响应 单位阶跃响应确定的 通常以h t 表示 3 1系统的时域性能指标 1典型输入信号使用典型的输入信号只是为了分析和设计的方便 采用典型的输入信号 可以使问题的数学处理系统化 可以由此去推知更复杂输入下的系统响应 控制系统的时域性能指标 是根据系统在单位阶跃函数作用下的时间响应 单位阶跃响应确定的 通常以h t 表示 2动态过程和稳态过程在典型输入信号作用下 任何一个控制系统的时间响应都由动态过程和稳态过程两部分组成 1 动态过程系统在典型输入信号作用下 输出量从初始状态到最终状态的响应过程 又称过渡过程或瞬态过程 表现为衰减 发散 等幅振荡的形式 2 稳态过程系统在典型输入信号作用下 当时间t 时输出量的表达方式 又称为稳态响应 一个实际的控制系统必须是衰减的 稳定的 3动态性能和稳态性能在典型输入信号作用下 系统的性能指标由动态性能和稳态性能两部分组成 1 动态性能动态性能指标 描述稳定的系统在单位阶跃函数作用下 动态过程随时间t的变化状况的指标 假设 零初始条件下 系统的单位阶跃响应h t 如下 其动态性能指标为 延迟时间td响应曲线首次达到稳态值的一半所需的时间 上升时间tr响应曲线从零首次上升到稳态值h 所需的时间 称为上升时间 对于响应曲线无振荡的系统 tr是响应曲线从稳态值的10 上升到90 所需的时间 峰值时间tp响应曲线超过稳态值h 达到第一个峰值所需的时间 调节时间ts在稳态值h 附近取一误差带 通常取响应曲线开始进入并保持在误差带内所需的最小时间 称为调节时间 ts越小 说明系统从一个平衡状态过渡到另一个平衡状态所需的时间越短 其动态性能指标为 超调量 响应曲线超出稳态值的最大偏差与稳态值之比 即 超调量表示系统响应过冲的程度 超调量大 不仅使系统中的各个元件处于恶劣的工作条件下 而且使调节时间加长 tr tp和ts表示控制系统反映输入信号的快速性 而 反映系统动态过程的平稳性 即系统的阻尼程度 其中ts和 是最重要的两个动态性能的指标 2 稳态性能稳态误差 当时间t 时系统的输出量不等于输入量或输入量的确定函数 则系统存在稳态误差 通常在阶跃函数 斜坡函数或加速度函数作用下进行测定或计算 结论 动态性能指标反映了系统的响应速度和阻尼程度 稳态性能指标反映了系统的控制精度 3 2一阶系统的时域分析 1一阶系统的数学模型什么是一阶系统 以一阶微分方程作为运动方程 闭环传递函数 2一阶系统的单位阶跃响应r t 1 t 微分方程 可查表2 3 23 一阶系统的单位阶跃响应曲线为初始值为零 以指数规律上升到终值的曲线 1 时间常数T可度量输出量的数值 如h T 0 632 t 3T 4T时过渡过程基本结束 此特点可用于测定T的数值或判断系统是否为一阶系统 2 时间常数T是阶跃响应曲线在t 0处切线斜率的倒数 随时间的推移斜率逐渐下降 结论 时间常数T决定了曲线的形状 反映了系统的惯性 T越小 系统惯性越小 响应过程越快 一阶系统的动态性能指标为 tp和 不存在 3一阶系统的单位脉冲响应 r t t 则R s 1 响应曲线为单调下降的指数曲线 ts 3T 实际中常以单位脉冲输入信号作用于系统 根据被测系统的单位脉冲响应求得被测系统的闭环传递函数 4一阶系统的单位斜坡响应 r t t则R s 1 s2 单位斜坡响应为 稳态分量 斜率与输入信号相同时间滞后T的斜坡函数 瞬态分量 衰减的非周期函数 一阶系统单位斜坡响应存在稳态误差ess t t T T从曲线上可知 一阶系统单位斜坡响应达到稳态时具有和输入相同的斜率 只是在时间上滞后T 这就存在着ess T的稳态误差 5一阶系统的单位加速度响应 单位加速度响应为 结论 系统对输入信号导数的响应就等于系统对该输入信号响应的导数 系统对输入信号积分的响应就等于系统对该输入信号响应的积分 积分常数由零输出初始条件确定 3 3二阶系统的时域分析 1二阶系统的数学模型什么是二阶系统 以二阶微分方程作为运动方程 闭环传递函数 方框图 其中 系统的阻尼比 n 系统的无阻尼自然振荡角频率 系统振荡周期 特征方程 特征根 4 系统有两个相等的负实根 为非周期过程 临界阻尼 5 系统有两个不相等的负实根 系统也是非周期过程 为过阻尼情况 的大小不同决定了二阶系统特征根具有不同的性质 根位置不同 n不同 有不同的阶跃响应 2二阶系统的单位阶跃响应 1 欠阻尼 0 1 二阶系统的单位阶跃响应 若令则 衰减系数 阻尼振荡频率 当r t 1 即R s 1 s时对上式整理并取拉式反变换得单位阶跃响应 0时 无衰减 等幅振荡 无阻尼振荡频率 又叫自然频率 0 2 临界阻尼 1 二阶系统的单位阶跃响应 当r t 1 即R s 1 s时对上式整理并取拉式反变换得单位阶跃响应 阶跃响应是随时间单调上升的当t 响应趋于稳态值 3 过阻尼 1 二阶系统的单位阶跃响应 当r t 1 即R s 1 s时 其中T1 T2称为过阻尼二阶系统的时间常数 且T1 T2 对上式取拉式反变换得单位阶跃响应 通常取 0 4 0 8为宜 3欠阻尼 0 1 二阶系统的动态过程分析 动态性能指标的计算 1 延迟时间td的计算 td不能用 和 n准确描述 采用工程上的近似计算方法得到 增大 n或减小 都可以减小延迟时间 2 上升延迟时间tr的计算 根据定义 有振荡的系统上升时间为响应从零第一次上升到终值所需的时间 因此 令h tr 1 得 当阻尼比 一定时 阻尼角 不变 系统响应速度与 n成正比 当阻尼振荡频率 d一定时 阻尼比越小上升时间越短 第一次到达 3 峰值时间tp的计算 对上式求导并令其为零 整理后得 第一次到达 4 超调量 的计算 根据超调量的定义得 只与阻尼比有关 一般选取 0 4 0 8时 介于1 5 25 4 之间 5 调节时间ts的计算 Ts很难用 和 n准确描述 采用工程上的近似计算方法得到 4过阻尼二阶系统的动态过程分析 含临界阻尼 单调过程 动态性能指标中 tp无意义 td tr ts采用工程上的近似计算方法得到 根据过阻尼二阶系统的单位阶跃响应 若令T1大于或等于4T2 则 5二阶系统性能的改善 1 比例 微分控制 比例 微分控制是一种早期控制 可在产生位置误差前提前产生修正作用 从而达到改善系统性能的目的 系统开环传递函数 闭环传递函数 等效阻尼比 相当于给系统增加了一个闭环零点 比例 微分控制的二阶系统称为有零点的二阶系统 比例 微分控制不改变系统的自然频率但可增大阻尼比 故可抑制系统的振荡 增大了系统的阻尼比 可以使系统动态过程的超调量下降 调节时间缩短 然而开环增益k保持不变 它的引入并不影响系统的稳态精度 同时也不改变系统的无阻尼振荡频率wn 比例微分控制使系统增加了一个闭环零点s 1 Td 前面给出的计算动态性能指标的公式不再适用 由于稳态误差与开环增益成反比 因此适当选择开环增益和微分器的时间常数Td 即可减小稳态误差 又可获得良好的动态性能 5二阶系统性能的改善 2 测速反馈控制 开环传递函数 为系统的开环增益 k有所减小 增大了稳态误差 因此降低了系统的精度 闭环传递函数显然 所以速度反馈同样可以增大系统的阻尼比 而不改变无阻尼振荡频率wn 因此 速度反馈可以改善系统的动态性能 等效阻尼比 在应用速度反馈校正时 应适当增大原系统的开环增益 以补偿速度反馈引起的开环增益减小 同时适当选择速度反馈系数kt 使阻尼比 t增至适当数值 以减小系统的超调量 提高系统的响应速度 使系统满足各项性能指标的要求 3 5线性系统的稳定性分析 1稳定性的基本概念 如小球的位置在a或c点 在微小扰动下 一旦偏离平衡位置 则无论怎样 小球再也回不到原来位置 则是不稳定的 如小球平衡位置b点 受外界扰动作用 从b点到点 外力作用去掉后 小球围绕b点作几次反复振荡 最后又回到b点 这时小球的运动是稳定的 稳定的定义若线性控制系统在初始扰动的影响下 其动态过程随时间的推移逐渐衰减并趋于0 原平衡工作点 则称系统为稳定 反之若在初始扰动的影响下 其动态过程随时间的推移而发散 则称系统不稳定 系统的稳定性与外作用及初始条件无关 取决于系统本身的结构参数 是系统的固有特性 2线性系统稳定的充分必要条件闭环系统特征方程的所有根均具有负实部 或者说闭环传递函数的极点均严格位于左半s平面 闭环系统的特征方程为 如果能够求出特征方程的所有根 则很容易判断系统的稳定性 例 已知求系统的稳定性 解得 解 根据闭环系统的特征方程 即 3劳斯稳定判据不用直接求出特征根 而依据特征方程的系数来判断线性系统的特征根是否全部严格位于左半s平面 则使线性系统稳定的充分必要条件是 在上述特征方程中 各项系数均为正数 设线性系统的特征方程为 充分必要条件是可由劳斯稳定判据获得 劳斯稳定判据为表格形式 称为劳斯表 线性系统稳定的充分必要条件 劳斯表第一列各值为正 如果劳斯表第一列中出现小于零的数值 系统不稳定 且变号的次数等于特征方程正实部根的数目 例 已知系统的特征方程如下 试用劳斯稳定判据判断该系统的稳定性 解 该系统劳斯表为 由于劳斯表的第一列系数有两次变号 故该系统不稳定 且有两个正实部根 S4135 S2 S1 S0 S324 4劳斯稳定判据的特殊情况 1 劳斯表中某行第一列项为零 其余各项不为零或不全为零 例 已知系统的特征方程如下 试用劳斯稳定判据判断该系统的稳定性 解 该系统劳斯表为 S5121 S300 5 S4241 S2 所以 劳斯表第一列变号两次 系统不稳定 S30 5 S21 S10 5 S01 S300 50 S5121 S4241 2 劳斯表中出现全零行 例 已知系统的特征方程如下 试用劳斯稳定判据判断该系统的稳定性 解 该系统劳斯表为 S61 2 7 4 S41 3 4 S51 3 4 S3000 说明特征方程有一些根位于虚轴上 系统处于临界状态 不稳定 其它根的情况由以下方法判断 辅助方程 S34 6 S2 1 5 4 S1 16 70 S0 4 求导 S61 2 7 4 S41 3 4 S51 3 4 S3000 劳斯表第一列数值有一次变号 系统不稳定 且有一个正实部根 特征根的情况 纯虚根 j 其它根 2 5劳斯稳定判据的应用 1 确定系统稳定时的参数取值范围 2 确定系统稳定裕量用 S 代替S 如果用劳斯判据判断仍能稳定 则表明该系统至少有稳定裕量 带参数按步骤列表计算劳斯表第一列元素 令含参数的元素大于零 得到系统稳定时的参数取值范围 注意 劳斯稳定判据的应用只局限于判断系统的稳定性 若稳定 不能保证有好的动态性能 若不稳定 不能给出使其稳定的方法 例 求当系统稳定时k值的范围 解 系统的闭环传递函数 特征方程 劳斯表 S312 S21k S12 k0 S0k 解得 特征方程 课堂练习 已知单位反馈控制系统的开环传递函数为试确定系统稳定时的K值范围 3 6线性系统的稳态误差计算 1稳态误差的定义 当主反馈信号B s 与输入信号不等时 比较装置的输出 闭环系统的误差传递函数 误差信号E s 的时域表达式 e t 包含瞬态分量ets t 和稳态分量ess t 两部分 因为所以 稳态误差的定义为误差信号e t 的稳态分量ess 常以ess简单表示 稳态误差的基本公式 计算方法之一 如果sE s 的极点均位于s左半平面 包括原点 则可根据拉氏变换的终值定理求得稳态误差 例 设单位反馈控制系统的开环传递函数为G s 1 Ts 输入信号为r t t2 2 试求控制系统的稳态误差 解 系统的误差传递函数为 当r t t2 2时 R s 1 s3 sE s 在s 0处有一个极点 另一个极点为 1 T 根据拉氏变换的终值定理 得 2系统类型 设一般情况下分子阶次为m 分母阶次为n的开环传递函数可表示为 K是开环增益 Tj为时间常数 V为开环系统在s平面坐标原点上的极点的重数 系统类型的定义 当V 0时为0型系统 当V 1为 型系统 当V 2时 为 型系统 当s 0时 受系统类型 开环增益 输入信号的影响 可以根据已知的输入信号的形式迅速判断系统是否存在原理性稳态误差及稳态误差的大小 描述了控制系统跟踪不同输入信号的能力 故s 0时 稳态误差的计算通式 计算方法之二 3阶跃输入作用下的稳态误差与静态位置误差系数 由稳态误差的计算通式得各型系统在阶跃输入信号作用下的稳态误差为 0型单位反馈控制系统在阶跃输入作用下的稳态误差描述的是输出的希望值与实际值的位置误差 如果要求系统对于阶跃输入作用不存在稳态误差 则必须选用 型及 型以上的系统 习惯上常采用静态位置误差系数Kp表示各系统在阶跃输入作用下的位置误差 称为静态位置误差系数 各型系统的静态位置误差系数为 4斜坡输入作用下的稳态误差与静态速度误差系数 由稳态误差的计算通式得各型系统在斜坡输入信号作用下的稳态误差为 习惯上常采用静态速度误差系数KV表示各系统在斜坡输入作用下的位置误差 称为静态位置速度误差系数 各型系统的静态速度误差系数为 5加速度输入作用下的稳态误差与静态加速度误差系数 由稳态误差的计算通式得各型系统在加速度输入信号作用下的稳态误差为 习惯上常采用静态加速度误差系数Ka表示各系统在加速度输入作用下的位置误差 称为静态位置加速度误差系数 各型系统的静态加速度误差系数为 结论 1 0型系统在阶跃信号作用下必有稳态误差 称为有差系统 1型 2型系统在阶跃信号作用下没有稳态误差 称为无差系统 结论 2 0型系统不能跟踪恒速变化的信号 1型系统能够跟踪恒速变化信号 但有稳态误差 2型系统能够跟踪恒速变化的信号 且无差 结论 3 0型 1型系统都不能跟踪恒加速度信号 2型系统能够跟踪恒加速度信号 但有差 1型系统的单位斜坡响应 2型系统的单位抛物线响应 如果系统承受的输入信号是多种典型函数的组合 如 根据叠加性原理 可将每一输入信号单独作用于系统 再将各稳态误差分量叠加起来 得 6扰动作用下的稳态误差 控制系统在扰动作用下的稳态误差值反映了系统的抗干扰能力 理想情况下 系统任意形式的扰动作用下的稳态误差为零 当sEn s 在s右半平面及虚轴上解析时 例 设比例控制系统如下图所示 图中R s R0 s为阶跃输入信号 M为比例控制器输出转矩 用以改变被控对象的位置 N s n0 s为阶跃扰动转矩 试求系统的稳态误差 解 本系统为 型系统 令N s 0 则系统对阶跃输入信号的稳态误差为零 令R s 0 则系统在扰动作用下的输出的实际值为 扰动作用下输出的希望值为零 因此误差信号为 系统在阶跃扰动转矩作用下的稳态误差为 小测验 1 化简方框图 求系统传递函数 2 单位负反馈系统结构图如下图所示 若输入信号分别为单位阶跃信号和单位斜坡信号 试求系统的稳态误差 第三章线性系统的时域分析法 7减小或消除稳态误差的措施 1 增大系统开环增益 可减小输入信号r t 作用下的稳态误差 2 增大扰动作用点之前系统的前向通道增益 可以减小扰动信号n t 作用下的稳态误差 3 在系统的前向通道设置串联积分环节 开环传递函数 G s H s 相当于提高系统的型号 可以消除r t 作用下的稳态误差 4 在扰动作用点之前系统的前向通道或主反馈通道设置积分环节 可以消除n t 作用下的稳态误差 改变扰动作用点的位置 在扰动作用点之前的前向通路中增加一个积分环节用 比例积分调节器 代替 注意 在反馈控制系统中 增大开环增益或设置串联积分环节可以减小或消除系统的稳态误差 但会降低系统稳定性 甚至造成不稳定 恶化系统的动态性能 5 采用串级控制抑制内回路的扰动 串级控制系统不仅能迅速克服作用于副回路的干扰 对作用于主回路的干扰也有加速调节的作用 在调节过程中 副调节器具有先调 快调 粗调的特点 主调节器具有后调 慢调 细调的特点 串级控制系统对克服副回路的干扰有较强的能力 当干扰包括在副回路 干扰对主控变量的影响减弱为原来的 热交换器传热量的控制 如果一次侧蒸汽的压力较平稳 通常以供水温度作为被控参数 蒸汽流量作为操作量 可采用简单的单回路控制系统对热交换器的传热量进行控制 如果一次侧蒸汽的压力波动较大 需采用供水温度 蒸汽压力串级控制系统 特点 增加了副回路调节 蒸汽流量调节回路 能及时克服蒸汽压力波动对控制系统的影响 具有一定的自适应特性 能超前调节 主回路的定值调节与副回路的随动调节相互配合 协调工作 能提高系统的控制品质 满足供热工艺的要求 第四章线性系统的根轨迹法 4 1根轨迹法的基本概念 1根轨迹概念 根轨迹简称根迹 是开环系统的某一参数从零变化到无穷时 闭环系统特征方程式的根在s平面上变化的轨迹 系统闭环特征方程为 D s S2 2S 2K 0特征根为 S1 S2 1 令K从0到无穷变化 可以用解析的方法求出特征根的全部数值 S1 S2 1 将这些数值标注在S平面上 并连成光滑的粗实线 系统闭环根轨迹 实根 根轨迹提供的信息 1 K从0 变化 根轨迹不会进入右半平面 即 无论如何该系统是稳定的 如果有可能越过虚轴进入右半平面 则与虚轴交点处的K值是临界开环增益 因此可由根轨迹图确定使系统稳定的K值取值范围 3 00 5时 根轨迹进入复平面 欠阻尼 阶跃响应为振荡过程 K越大振荡越厉害 小 振荡频率越高 d大 2根轨迹与系统性能 稳定性 2 以右图为例 开环系统在坐标原点有一个极点 属于 型系统 此时根轨迹上的K值就是静态速度误差系数 如果给定系统的稳态误差要求 则由根轨迹图就可确定闭环极点位置的容许范围 稳态性能 动态性能 不等负实根1相等负实根2共轭复根3共轭虚根4正 正实部 根5 根在根平面上的位置 3闭环零极点与开环零极点之间的关系 前向通路的增益 前向通路的根轨迹增益 如图所示 控制系统的闭环传递函数为 将前向通路的传递函数和反馈通路的传递函数分别表示 同理 系统的开环传递函数可表示为 K KG KH 称为开环系统的根轨迹增益 对于一个有m个开环零点和n个开环极点的系统 有f l m q h n 系统的闭环传递函数为 由系统的开环传递函数和闭环传递函数的表达式可得到以下结论 闭环零极点与开环零极点之间的关系 1 闭环系统的根轨迹增益 等于开环系统前向通路的根轨迹增益 对于单位反馈系统 闭环系统根轨迹增益就等于开环系统根轨迹增益 2 闭环零点由开环前向通路传递函数的零点和反馈通路传递函数的极点所组成 对于单位反馈系统闭环零点就是开环零点 3 闭环极点与开环零点 开环极点和根轨迹增益K 均有关 4根轨迹方程 绘制根轨迹的基本条件 设控制系统的闭环传递函数为 该系统的闭环特征方程为 当系统有m个开环零点和n个开环极点时 zj为已知的开环零点 pi为已知的开环极点 当K 从零变到无穷 根轨迹方程 绘制根轨迹的基本条件 为了使用方便 根轨迹方程可由如下两个方程描述 和 相角条件 幅值条件 确定根轨迹的充要条件 幅角应满足 幅值应满足 4 2常规根轨迹的绘制法则 法则1 根轨迹的起点和终点 根轨迹起于开环极点 终于开环零点 根据绘制根轨迹的两个基本条件 演绎出八条绘制根轨迹的基本法则 根轨迹起点是指根轨迹增益K 0时的根轨迹点 根轨迹终点是指根轨迹增益K 时的根轨迹点 系统的闭环传递函数为 s zj j 1 2 m 说明闭环特征根就是开环零点 所以根轨迹必终于开环零点 当K 0时 s pi i 1 2 n 说明闭环特征根就是开环极点 所以根轨迹必起于开环极点 闭环特征方程为 当K 时 在实际系统中 开环传递函数分子多项式的次数m与分母多项式的次数n满足m n 即零点个数 极点个数 若有限数值的零点称为有限零点 无限数值的零点称为无限零点 则此时开环零极点的个数是相等的 m n时 n条轨迹从开环极点出发 只能有m条终止在开环零点 另外n m条应终止何处 终止在无穷远处 法则2 根轨迹的分支数 对称性和连续性 根轨迹的分支数等于有限零点数m和有限极点数n中的大者 连续且对称于实轴 法则3 根轨迹的渐近线 当开环有限极点数n大于有限零点数m时 有n m条根轨迹分支沿着与实轴夹角为 a 交点为 a的一组渐近线趋向无穷远处 且有 渐近线的做法 设控制系统如上图所示 开环环传递函数为 首先 根据已知的三个绘制法则 确定相关数据 开环零点z1 1 开环极点p1 0 p2 4 p3 1 j p4 1 j 标注在s平面上 渐近线的做法 由法则1 根轨迹起于极点p1 p4 终于零点z1和无穷远处 由法则2 根轨迹有4条分支 连续且对称与实轴 由法则3 根轨迹有3条渐近线 夹角 交点 1 67 法则4 根轨迹在实轴上的分布 在实轴上的某一区域 若其右边开环实数零极点个数之和为奇数 则该区域必是根轨迹 法则5 根轨迹的分离点与分离角 两条或两条以上的根轨迹分支在s平面上相遇又立即分开的点称为根轨迹的分离点 其坐标是下列方程的解 zj pi代表各开环零极点的数值 分离角为 l为根轨迹相遇又分离的条数 有关分离点的说明 分离的位于实轴上 或以共轭的形式成对出现在复平面中 如果根轨迹位于实轴上两个相邻开环极点之间 其中一个可以是无限极点 这两个极点之间至少存在一个分离点 如果根轨迹位于实轴上两个相邻开环零点点之间 其中一个可以是无限零点 这两个零点之间至少存在一个分离点 分离角代表根轨迹进入分离点的切线方向与离开分离点的切线方向的夹角 l 2时分离角为直角 例4 1设系统结构图如右图所示 试绘制其概略根轨迹 由法则4知 实轴上区域 3 2 1 0 是根轨迹的一部分 由法则2知 有3条根轨迹分支 由法则1知 有1条根轨迹起开环极点0 终于开环零点 1 另外2条分别起于开环极点 2 3 终于 由法则3知 2条终于 的根轨迹的渐近线与实轴的夹角和交点为 例4 1设系统结构图如右图所示 试绘制其概略根轨迹 由法则5知 2 3 之间必有一分离点d 因为d在 2 3 之间 用试探法 设d 2 5 左边略小于右边 重取d 2 47两边近似相等 分离角为直角 概略根轨迹如右图所示 法则6 根轨迹起始角和终值角 根轨迹离开开环复数极点处的切线与正实轴的夹角 称为起始角 以标志 根轨迹进入开环复数零点处的切线与正实轴的夹角 称为终值角 以标志 某一开环复数极点 zj到pi的向量相角 pj到pi的向量相角 例4 3设系统开环传递函数如下 试绘制概略根轨迹 由法则4 确定实轴上的根轨迹 2 5 1 5 0 由法则2 确定有4条根轨迹分支 由法则1 确定根轨迹起点和终点 由法则3 确定根轨迹有1条渐近线 由法则5 确定分离点 本例无分离点 由法则6 确定起始角和终止角 起始角 作各开环零极点到开环复数极点 0 5 1 5j 的向量 测出相应的角度 故开环复数极点 0 5 1 5j 处的起始角为 根据根轨迹的对称性开环复数极点 0 5 1 5j 处的起始角为 790 终止角 作各开环零极点到开环复数零点 2 j 的向量 测出相应的角度 故开环复数零点 2 j 处的终止角为 根据根轨迹的对称性开环复数零点 2 j 处的起始角为 149 50 法则7 根轨迹与虚轴的交点 若根轨迹与虚轴相交 则交点上的K 值与 值可以用劳斯判据确定 也可令闭环特征方程中的s j 然后分别令其实部和虚部为零而求得 先令劳斯表第一列中包含K 的项为零 即可确定K 的值 即K 取此值时根轨迹与虚轴相交 其次构造辅助方程 通常是利用s2行的系数构造辅助方程 一对纯虚根 求出的 数值 如果有多对纯虚根 则采用幂大于2的s偶次方行的系数构造辅助方程 例4 4设系统开环传递函数如下 试绘制概略根轨迹 由法则4 确定实轴上的根轨迹 3 0 由法则2 确定有4条根轨迹分支 由法则1 确定根轨迹起点和终点 由法则3 确定根轨迹有4条渐近线 由法则5 确定分离点 没有有限零点 故 用试探法得d 2 3 由法则6 确定起始角和终止角 本题无须确定终止角 由法则7 确定根轨迹与虚轴的交点 闭环特征方程为 列劳斯表如下 令 0 得K 8 16 根据s2行的系数构造辅助方程 将K 8 16代人 并令s j 代人 得 1 1 继续画根轨迹 闭环极点的确定 对于特定K 值下的闭环极点 可用根轨迹方程的模值条件确定 如果闭环极点较多的话 计算比较麻烦 通常先采用试探法确定实数闭环极点的数值 然后用综合除法得到其余的闭环极点 如果某一K 值下闭环系统只有一对复数极点 可直接从根轨迹图上获得闭环极点 例4 5设空间站方位控制系统开环传递函数如下 试绘制K 增大时的概略根轨迹 求出使系统输出响应产生振荡的K 值的取值范围 并确定K 10时系统的单位阶跃响应 因而当K 16 37时系统输出将会产生振荡 应用模值条件可得分离点处根轨迹增益 解由法则1 5 得根轨迹如右图所示 用Matlab软件直接得到K 10时系统的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 做账实操-融资租赁公司成本核算
- 2025年秸种腐熟剂合作协议书
- 会展公司活动策划培训试题及详细答案
- 学生代课试题带答案
- 护理专接本考试题及答案
- 建筑结构设计与施工技术创新方案
- 考医院笔试题库及答案
- 2025年餐饮与管理考试题及答案
- 安全教育幼儿园井盖课件
- 幼儿园冬季安全知识课件
- 大跨度钢结构厂房吊装方案
- 2025年挖掘机驾驶员岗位招聘面试参考试题及参考答案
- 2025年中央八项规定精神学习教育题库及答案
- 慢性心力衰竭患者姑息治疗与安宁疗护方案
- 2025内蒙古巴彦淖尔市交通投资(集团)有限公司(第二批)招聘40人笔试考试参考试题及答案解析
- 广东信息技术考试题目及答案
- 学堂在线 研究生素养课-积极心理与情绪智慧 章节测试答案
- 生涯发展报告
- 发电厂机组大修计划进度网络图
- 防火卷帘施工方案0001
- 定岗、定编原理与操作示例
评论
0/150
提交评论