静止无功补偿课程论文.doc_第1页
静止无功补偿课程论文.doc_第2页
静止无功补偿课程论文.doc_第3页
静止无功补偿课程论文.doc_第4页
静止无功补偿课程论文.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽工程大学电气工程及其自动化专业摘要电压是电能质量的重要指标之一,网损是电力企业的一项重要综合性技术经济指标。长期以来电力系统网络损耗问题比较突出,而无功补偿是降低线损的有效手段。随着电力系统负荷的增加,对无功功率的需求也日益增加。在电网中的适当位置装设无功补偿装置成为满足电网无功需求的必要手段。本文从无功补偿的现实意义出发,分析了无功补偿的必要性和经济效益。简单介绍了目前无功补偿研究的现状,探讨无功补偿的原理并对主要的几种无功补偿方式进行了简要的分析,给出本文设计静止无功补偿发生器的研究任务。本文设计的静止无功补偿器采用了先进的数字信号处理器DSP作为控制核心。充分利用DSP强大的数字信号处理功能,育瓣及时完成采样、控制、实时计算等任务。DSP在SVG的控制过程中表现出巨大的潜能,为以后越来越复杂的控制策略和方法提供了一种解决平台。其主电路及其辅助电路,并且应用能够有效抑制谐波的SPWM法进行控制,进一步改善了输出电压波形质量。我个人认为,静止无功发生器这项新技术在我国具有广阔的应用前景。我国大多数电网的结构比较薄弱,结构不甚合理,耐受事故冲击的能力比较差,高压输电线路的输送能力远未发挥出来。从系统运行方面讲,系统稳定性指标也不高。由于SVG技术具有与现行系统完全兼容的优点,可以对现有设备不做重大改动的条件下,充分发挥现有电网的潜力,以渐进的方式改变电力系统的面貌,这点适合我国发展资金比较紧张的状况。因此有必要尽快研究和掌握这一崭新的技术。目前国内其他FACTS装置的发展也为掌握SVG的技术奠定了一定的基础,随着国内电力电子制造技术的快速发展和理论研究的不断深入,工业级的SVG装置很快就应该面世。DSP是一种专为进行数字信号处理而设计的处理器,它以其高速的运算能力、卓越的性能而被世人所认可。随着DSP应用范围的不断扩大,近年来DSP开始被引入到电力工业的控制领域当中。因此,研究DSP在电力工业控制领域中的应用将是非常有意义和有广阔的市场空间的。关键词:无功补偿、电容、电感、 ABSTRACTVoltage is one of important quality index of electric power system. Power loss is an important synthesis technical and economic index of power companies. In the past several years, the problem of power loss is very serious. However, reactive compensation is an effective method to save power loss .Due to increasing loads of electric power system, demand of reactive power was also increasing. It became necessary means that reactive power compensation devices were installed in proper position of electric network. This thesis considers the significance of reactive Power compensation and analyses the indispensability and economic benefits of reactive Power compensation. The development status of reactive power compensation is briefly introduced. Principles of reactive power compensation are explained. Several primary reactive power compensation solutions are discussed. This thesis proposed an intelligent low voltage reactive compensation control scheme and implemented device for shunt capacitor compensation. An ATT7022A is adopted to detect the power grid operation information to reduce the calculation volume of CPU and enhance the precision of power grid parameter identification. This also simplifies design work of the software. ATMEGA64 is utilized as the main process unit and method combining power factor control and voltage limitation is used as the system working mode. Specific voltage phase is determined to switching shunt capacitor via permanent magnetic vacuum synchronous switch. Thus the surge produced during the traditional capacitor switching method is greatly diminished. It provides diverse protect measures to ensure the stability and reliability. It bears friendly human machine interface and communication interface and is convenient for use.Key Words: Reactive Power Compensation, 0 引言 静止无功发生器,英文描述为:Static Var Generator,简称为SVG。又称高压动态无功补偿发生装置,或静止同步补偿器。是指由自换相的电力半导体桥式变流器来进行动态无功补偿的装置。SVG是目前无功功率控制领域内的最佳方案。相对于传统的调相机、电容器电抗器、以晶闸管控制电抗器TCR为主要代表的传统SVC等方式,SVG有着无可比拟的优势。 一、 SVG无功补偿装置的应用场合 凡是安装有低压变压器地方及大型用电设备旁边都应该配备无功补偿装置(这是国家电力部门的规定),特别是那些功率因数较低的工矿、企业、居民区必须安装。大型异步电机、变压器、电焊机、冲床、车床群、空压机、压力机、吊车、冶炼、轧钢、轧铝、大型交换机、电灌设备、电气机车等尤其需要。居民区除白炽灯照明外,空调、冷冻机等也都是无功功率不可忽视的耗用对象。农村用电状况比较恶劣,多数地区供电不足,电压波动很大,功率因数尤其低,加装补偿设备是改善供电状况、提高电能利用率的有效措施。 二、 SVG无功补偿装置与目前国内其他产品相比的优势 1、补偿方式:国内的无功补偿装置基本上是采用电容器进行无功补偿,补偿后的功率因素一般在0.8-0.9左右。SVG采用的是电源模块进行无功补偿,补偿后的功率因素一般在0.98以上,这是目前国际上最先进的电力技术,国内掌握这项技术的目前就我们一家; 2、补偿时间: 国内的无功补偿装置完成一次补偿最快也要200毫秒的时间,SVG在5-20毫秒的时间就可以完成一次补偿。无功补偿需要在瞬时完成,如果补偿的时间过长会造成该要无功的时候没有,不该要无功的时候反而来了的不良状况; 3、有级无极: 国内的无功补偿装置基本上采用的是310级的有级补偿,每增减一级就是几十千法,不能实现精确的补偿。SVG可以从0.1千法开始进行无极补偿,完全实现了精确补偿; 4、谐波滤除: 国内的无功补偿装置因为采用的是电容式,电容本身会放大谐波,所以根本不能滤除谐波,SVG不产生谐波更不会放大谐波,并且可以滤除50%以上的谐波; 5、使用寿命: 国内的无功补偿装置一般采用接触器或可控硅控制,造成使用寿命较短,一般在三年左右,自身损耗大而且要经常进行维护。SVG使用寿命在十年以上,自身损耗极小且基本上不要维护。 1 静止无功补偿器的总体设计1.1 静止无功补偿器的主电路ASVG分为采用电压型桥式电路和电流型桥式电路两种类型。两者的区别是直流侧分别采用的是电容和电感这两者不同储能元件,对电压型桥式电路,还需要串联上电抗器才能并上电网;对电流型桥式电路,还需要并联上电容器才能并上电网。实际上,由于运行效率的原因,实际应用的ASVG大多采用的是电压型桥式电路。因此ASVG专指采用自换相的电压型桥式电路作为动态无功补偿的装置。ASVG的基本结构如图1-1。它由下列几部分组成:电压支撑电容,其作用是为装置提供一个电压支撑;由大功率电力电子开关器件(IGBT或GTO)组成的电压源逆变器(VSC),通过脉宽调制(PWM)技术控制电力电子开关的通断,将电容器上的直流电压变换为具有一定频率和幅值的交流电压;耦合变压器或电抗器,一方面通过它将大功率变流装置与电力系统耦合在一起,另一方面还可以通过它将逆变器输出电压中的高次谐波滤除,使ASVG的输出电压接近正弦波。图1-1 电压型补偿器结构图上图为电压型的补偿器,如果将直流侧的电容器用电抗器代替,交流侧的串联电感用并联电容代替,则为电流型的补偿器。交流侧所接的电感L和电容C的作用分别为阻止高次谐波进入电网和吸收换相时产生的过电压。无论是电压型,还是电流型的SVG其动态补偿的机理是相同的。当送到逆变器的脉宽恒定时,调节逆变器输出电压与系统电压之间的夹角就可以调节无功功率和逆变器直流侧电容电压Uc,同时调节夹角和逆变器脉宽,即可以在保持Uc恒定的情况下,发出或吸收所需的无功功率。SVG装置的核心部分是逆变电路,它将整流后的直流电压进行逆变以产生-个频率与系统相同的交流电压,并且这个电压的幅值和相位都可调,然后通过电抗器把这个电压并到电网上去,从而产生所需的交流无功功率。利用IGBT智能模块后,逆变器电路无论是在体积、性能、稳定性上还是控制方式上都得到了极大的简化。本文中所介绍到的静止无功发生器是电压型的SVG,它具有主电路的拓扑结构简单,且逆变装置所用的电压型器件IGBT易于控制,灵活方便。1.2 静止无功补偿器的工作原理图1-2 SVG工作原理图逆变器IPM的输出经过一个数值不大的电抗XL(包括变压器的内抗)接入三相交流电网,调节逆变器输出电压Vi的相位,使得Vi与交流电网电压代同相(相角差=0),这么看来逆变器就变成为一个无功功率发生器了,从而可以得出:当输出电压Vi高于电网电压Ys时,这时无功功率发生器输出滞后的无功即感性的无功功率。当输出电压Vi低于电网电压Vs时, 这时无功功率发生器输出超前的无功即容性的无功功率。因此,控制无功功率发生器(逆变器工PM)输出电压Vi的大小,即可控制其输出无功功率的数值大小及其性质(超前或滞后)。从以上的分析我们可以知道,逆变器IPM能独立地与电网进行无功功率的交换,并能从系统吸收有功功率,为直流侧电电容器提供能量的支持1.3 静止无功补偿器的常用控制方法前面已经介绍,由无功电流(或者无功功率)参考值调节SVG,控制SVG发出无功的性质和大小,就可以补偿负载所需的无功,具体的控制方法可以分为间接控制和直接控制两种方式。这两种控制方式都可以对无功电流进行控制,以补偿电路中所需要的无功,因此,更准确地讲,这两种方式都是针对流过SVG的无功电流进行控制。但从软件的可靠性和硬件的复杂程度来考虑,采用电流的间接控制要比电流的直接控制实现起来容易的多。SVG对电力系统的影响和控制主要是通过逆变器输出三相正弦电压并联到线路中来实现的。因此,输出三相电压波形严格对称且每相的正负半周也对称的SPWM是十分关键的。SPWM (Sinusoidal Pulse Width Modulation)法的基本思想是使输出的脉冲宽度按正弦规律变化,因这样的调制技术能有效地抑制输出电压中的低次谐波分量。因此,SVG的逆变器采用SPWM控制方式,可以输出质量较高的正弦波,大大提高电网的电压品质。生成SPWM波形的方法目前主要有软硬件相结合的方法和采用纯软件编程的方法。采用软硬件相结合的方法具有精确度不高,生成波形的硬件电路较复杂等缺点。而利用数字信号处理器(DSP)的事件管理器,用纯软件编程方法实现SPWM波形的输出可减少系统的硬件投资,并具有实时性好和运算精确等优点。(1)经分析,在角绝对值不太大的情况下,与IO接近线性正比关系。因止通过控角就可以控制SVG吸收的无功电流。这样就可以得出SVG最简单的控制方法,原理图:图1-3 SVG最简原理图当改变角时,VL也随着变化。VS的变化是通过直流端支撑电压VD变化而实现。角变化时,变流器将吸收一定的有功电流,因而直流侧的电容将被充电或放电,因而引起VD的变化,从而引起VI的变化。当暂态过程完毕时,VI,IQ必然满足上述关系式。(2) 如果在这种控制方法基础上加上反馈环节,那么无功电流的控制精度和响应速度都会大大提高。其原理图:图1-4 SVG加反馈环节的原理图在此基础上,产生了许多种控制方法,比如对角和逆变器脉宽角联合起来的控制策略等。电流间接控制方法多适用于较大容量的SVG装置,其减少谐波方法多采用多重化的方法并且结合PWM技术。2 微机试验为了验证SVC系统的功能,该样机在2kV的电压等级下进行了试验。图4.1是在切除了无功负荷造成系统电压跃升时,SVC的补偿作用对系统电压影响的过程,可以看出SVC对这种扰动的响应时间约为25ms。图4.1切除无功负荷时在SVC补偿作用下系统电压变化为检验SVC对负荷补偿时抵消负荷不平衡的能力,在现场试验系统中接入单相有功负荷,造成系统线电压产生大约3%的不平衡度,试验显示,SVC投入运行后,能够快速补偿负荷线电流的负序分量,使系统的三个线电流得以平衡从而减小了系统线电压的不平衡度,试验波形见图4.2,投入前后的线电压记录于表4-1中。图 4.2不平衡负荷下SVC投入前后系统线

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论