




免费预览已结束,剩余14页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
塑性:弹性:2-16设有任意形状的等厚度薄板,体力可以不计,在全部边界上(包括孔口边界上)受有均匀压力q试证 及能满足平衡微分方程、相容方程和应力边界条件,也能满足位移单值条件,因而就是正确的解答。 证明: (1)将应力分量,和分别代入平衡微分方程、相容方程 (a) (b)显然(a)、(b)是满足的(2)对于微小的三角板都为正值,斜边上的方向余弦,将,代入平面问题的应力边界条件的表达式 (c)则有 所以,。对于单连体,上述条件就是确定应力的全部条件。(3)对于多连体,应校核位移单值条件是否满足。 该题为平面应力的情况,首先,将应力分量及代入物理方程,得形变分量, (d)然后,将(d)的变形分量代入几何方程,得, (e)前而式的积分得到 , (f) 其中的和分别是y和x的待定函数,可以通过几何方程的第三式求出,将式(f)代入(e)的第三式得 等式左边只是y的函数,而等式右边只是x的函数。因此,只可能两边都等于同一个常数,于是有,积分以后得,代入(f)得位移分量其中为表示刚体位移量的常数,须由约束条件求得。从式(g)可见,位移是坐标的单值连续函数,满足位移单值条件,因而,应力分量是正确的解答。2-17设有矩形截面的悬臂粱,在自由端受有集中荷载F ,体力可以不计。试根据材料力学公式,写出弯应力和切应力的表达式,并取挤压应力,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答。解1矩形悬臂梁发生弯曲变形,任意横截面上的弯矩方程为,横截面对z轴(中性轴)的惯性矩为,根据材料力学公式,弯应力;该截面上的剪力为,剪应力;并取挤压应力(2)经验证,上述表达式能满足平衡微分方程 也能满足相容方程再考察边界条件:在的主要边界上,应精确满足应力边界条件:,;,。能满足在次要边界x=0上,列出三个积分的应力边界条件:满足应力边界条件。在次要边界上,列出三个积分的应力边界条件:满足应力边界条件因此,他们是该问题的解答。3-8设题3-8图中的三角形悬臂梁只受重力作用,而梁的密度为,试用纯三次式的应力函数求解。解(1)相容条件: 设 (a) 不论上述中的系数取何值,纯三次式的应力函数总能满足相容方程。(2)体力分量由应力函数得应力分量的表达式 (b) (c) (d)(3)考察边界条件:利用边界条件确定待定系数先考察主要边界上的边界条件:, 将应力分量式(b)和式(c)代入,这些边界条件要求, 得A=0,B=0。式(b)、(c)、(d)成为 (e) (f) (g)根据斜边界的边界条件,它的边界线方程是,在斜面上没有任何面力,即,按照一般的应力边界条件,有将(e)、(f)、(g)代入得 (h) (i)由图可见, , 代入式(h)、(i)求解C和D,即得,将这些系数代入式(b)、(c)、(d)得应力分量的表达式4-12楔形体在两侧面上受有均布剪力q,如题4-12图所示.试求其应力分量。解 (1)应力函数,进行求解由应力函数得应力分量(2)考察边界条件:根据对称性,得 (a) (b) (c) (d)由式(a)得 (e)由式(b)得 (f)由式(c)得 (g)由式(d)得 (h)式(e)、(f)、(g)、(h)联立求解,得将以上系数代入应力分量,得 4一13设有内半径为r,外半径为R的圆筒受内压力q,试求内半径和外半径的改变,并求圆筒厚度的改变。 解 本题为轴对称问题,只有径向位移而无环向位移。当圆筒只受内压力q的情况下,取应力分量表达式(B=0),内外的应力边界条件要求,由表达式可见,前两个关于的条件是满足的,而后两个条件要求由上式解得, (a)把A,B,C值代入轴对称应力状态下对应的位移分量, (b) (c)式(c)中的取任何值等式都成立,所以个自由项的系数为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业公民报告2024-2025年综合报告医用耗材
- 2025年市场分析计划书云计算技术在企业数字化转型中的应用可行性研究报告
- 商铺租赁转让合同范本7篇
- 商标续展代理服务合同5篇
- 【正版授权】 ISO 24690:2025 EN Glass reinforced thermosetting plastic (GRP) pipes - Test method for the determination of long-term pressure endurance strength
- 2025年新能源光伏品牌专利布局与市场竞争报告
- 2025年新能源汽车充电设施与电动汽车产业链协同效应研究报告
- 加工保密条款合同
- 2025华润啤酒管培生招聘持续热招中笔试题库历年考点版附带答案详解
- 2025中铁十五局集团公司办公室(党委办公室)工作人员招聘2人笔试题库历年考点版附带答案详解
- 2023-2024学年辽宁省名校联盟高二9月份联合考试英语试题(解析版)
- 《人工智能基础第2版》全套教学课件
- 《无机化学》课件-氢键
- 实验心理学课件
- 校长校园安全教育课件
- 化工企业物料编码规则培训课件
- 粉条检测报告
- 污水处理厂污泥处理处置投标方案
- 车灯LED封装DFMEA范例
- 《全国医疗服务价格项目规范》(2022版)
- 2023年贵州茅台机场第二次招聘笔试参考题库附带答案详解
评论
0/150
提交评论