



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2017届高考备考资料圆锥曲线的离心率圆锥曲线求离心率范围问题一致是近几年高考的重点和热点,尤其是新课标卷在选择题中出现的次数比较频繁。下面本文将对求离心率问题的常见求法进行较为系统的总结,希望能对同学们有所帮助。一.直接利用条件寻找的关系求解例1设双曲线的一个焦点为,虚轴的一个端点为,如果直线与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )(A) (B) (C) (D)解析:选D.不妨设双曲线的焦点在轴上,设其方程为:,则一个焦点为 一条渐近线斜率为:,直线的斜率为:, ,解得.例2 斜率为2的直线过中心在原点且焦点在轴上的双曲线的右焦点,与双曲线的两个交点分别在左、右两支上,则双曲线的离心率的取值范围是( ) A. B. C. D.解析 设双曲线的方程为,右焦点的坐标为,直线的方程为.由,得.根据题意得,.小结 将直线的方程与双曲线的方程联立后,使判别式大于零,同时注意.二、利用圆锥曲线的第一定义或第二定义求解例1设分别是双曲线的左、右焦点,若双曲线上存在点,使且,则双曲线的离心率为( ) ABCD解例2 双曲线的两个焦点为,若为其上一点,则双曲线离心率的取值范围是( )A. B. C. D.解析 由双曲线的定义得.故双曲线离心率的取值范围是,选B.例3 双曲线的右支上存在一点,它到右焦点及左准线的距离相等,则双曲线离心率的取值范围是( )A. B. C. D.解析 利用双曲线的焦半径公式有.又双曲线的离心率,所以选C.小结 圆锥曲线上的点到焦点的距离或到准线的距离,通常要用它们的第一定义或第二定义来建立联系.三、利用圆锥曲线的范围(有界性)求解例1 椭圆的左、右焦点分别为,为椭圆上的任意一点,且的最大取值范围是,其中,则的离心率的范围为( )A. B. C. D.解析设,则.又,.,.当时,.选B.小结 确定椭圆上点与的等量关系,由椭圆的范围,即建立不等关系.如果涉及到曲线上的点到焦点的距离的有关问题,可用曲线的焦半径公式分析.四、利用数形结合求解yxO例1 如右图所示,椭圆和圆(其中为椭圆的半焦距)有四个不同的交点,求椭圆的离心率的取值范围.解析 要使椭圆与圆有四个不同的交点,只需满足,即.小结 将数用形来体现,直接得到的关系,这无疑是解决数学问题最好的一种方法,也是重要的解题途径.例2 如图,F1,F2分别是双曲线1(a0,b0)的两个焦点,A和B是以O为圆心,以|OF1|为半径的圆与该双曲线左支的两个交点,且F2AB是等边三角形,则双曲线的离心率为( )A. B.C. D.1从以上四种求圆锥曲线离心率的范围的策略来看,我们要明确求离心率的范围的关键是建立一个的不等关系,然后利用椭圆与双曲线中的默认关系以及本身离心率的限制范围,最终求出离心率的范围.【高考题回顾】1. 已知双曲线的左、右焦点分别为、,抛物线的顶点在原点,准线与双曲线的左准线重合,若双曲线与抛物线的交点满足,则双曲线的离心率为( )A BCD解:由已知可得抛物线的准线为直线, 方程为;由双曲线可知, , , ,2椭圆()的两个焦点分别为、,以、为边作正三角形,若椭圆恰好平分三角形的另两边,则椭圆的离心率为 ( B ) A B C D解析:设点为椭圆上且平分正三角形一边的点,如图,由平面几何知识可得,所以由椭圆的定义及得:,故选B 变式提醒:如果将椭圆改为双曲线,其它条件不变,不难得出离心率3. 过双曲线的右顶点作斜率为的直线,该直线与双曲线的两条渐近线的交点分别为若,则双曲线的离心率是 ( )A B C D【解析】对于,则直线方程为,直线与两渐近线的交点为B,C,因此答案:C4. (09江西理)过椭圆()的左焦点作轴的垂线交椭圆于点,为右焦点,若,则椭圆的离心率为( ) A B C D 【解析】因为,再由有从而可得,故选B5已知双曲线的左、右
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 相关专业试题及答案大全
- 小学语文四年级《天窗》教育教学课件
- 针灸推拿专业试题及答案
- 考研的专业试题及答案
- 财务专业笔试题及答案
- 河北省唐山市路北区2024-2025学年四年级上学期期末数学试题
- 广东省东莞市2025届九年级下学期中考一模物理试卷(含答案)
- 闵行区庭院施工方案公示
- 铺警示砖施工方案
- 第三单元 珍爱我们的生命 达标测试卷(含答案)统编版道德与法治七年级上册
- 2025四川省水电投资经营集团有限公司所属电力公司员工招聘6人备考练习题库及答案解析
- 广东省深圳市福田区红岭实验学校(上沙)2025-2026学年八年级上学期开学考试英语试卷(含答案)
- 2025年适老化家居市场分析报告
- 社区宣传工作知识培训课件
- 瑜伽相关知识培训课件
- 导乐师理论知识考核试题及答案
- 2025年中国移动式皮带输送机市场调查研究报告
- ETL开发规范流程与案例分析文档
- 高校学生就业服务平台建设方案
- 贷款熔断管理办法
- 2025年公安部交管局三力测试题库及答案
评论
0/150
提交评论