




已阅读5页,还剩26页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 31 IOPERATING FROM VCC 2 2V to 5 5V I1W RAI L TO RAIL OUTPUT POWER Vcc 5V THD 1 f 1kHz with 8 Load IULTRA LOW CONSUMPTION IN STANDBY MODE 10nA I75dB PSRR 217Hz from 5 to 2 2V IPOP CLICK REDUCTION CIRCUITRY IULTRA LOW DISTORTION 0 1 IUNITY GAIN STABLE IAVAILABLE IN MiniSO8 SO8 DESCRIPTION The TS4890 MiniSO8 SO8 is an Audio Power Amplifier capable of delivering 1W of continuous RMS ouput power into 8 load 5V This Audio Amplifier is exhibiting 0 1 distortion level THD froma 5V supply for a Pout 250mW RMS An external standby mode control reduces the supply current to less than 10nA An internal thermal shutdown protection is also provided The TS4890 have been designed for high quality audio applications such as mobile phones and to minimize the number of external components The unity gain stable amplifier can be configured by external gain setting resistors APPLICATIONS IMobile Phones Cellular Cordless ILaptop Notebook Computers IPDAs IPortable Audio Devices ORDER CODE S MiniSO Package MiniSO also available in Tape Reel ST D Small Outline Package SO also available in Tape Reel DT PIN CONNECTIONS Top View Part Number Temperature Range Package SD TS4890IST 40 85 C TS4890IDT Standby Bypass V IN VIN V2OUT GND VCC VOUT1 1 2 3 4 8 7 6 5 Rin Cin Rstb Cb Rfeed 4 3 2 1 5 8 Vin Vin Bypass Standby Bias 6 Vout1 Vout2 Av 1 TS4890 RL 8 Ohms Vcc GND Audio Input Vcc Vcc Cfeed Cs 7 TYPICAL APPLICATION SCHEMATIC TS4890IS TS4890IST MiniSO8 TS4890ID TS4890IDT SO8 Standby Bypass V IN VIN V2OUT GND VCC VOUT1 1 2 3 4 8 7 6 5 TS4890 RAIL TO RAIL OUTPUT 1W AUDIO POWER AMPLIFIER WITH STANDBY MODE November 2001 TS4890 2 31 ABSOLUTE MAXIMUM RATINGS OPERATING CONDITIONS SymbolParameterValueUnit VCC Supply voltage 1 6V Vi Input Voltage 2 GNDto VCCV Toper Operating Free Air Temperature Range 40 to 85 C TstgStorage Temperature 65 to 150 C TjMaximum Junction Temperature150 C RthjaThermal Resistance Junction to Ambient3 SO8 MiniSO8 175 215 C W Pd Power Dissipation4 See Power Derating Curves Fig 24 W ESDHuman Body Model2kV ESDMachine Model200V Latch up ImmunityClass A Lead Temperature soldering 10sec 260 C 1 All voltages values are measured with respect tothe ground pin 2 The magnitude of input signal must never exceed VCC 0 3V GND 0 3V 3 Device is protected in case of over temperature by a thermal shutdown active 150 C 4 Exceeding the power derating curves during a long period may involve abnormal working of the device SymbolParameterValueUnit VCCSupply Voltage2 2 to 5 5V VICMCommon Mode Input Voltage RangeGND 1V to VCCV VSTB Standby Voltage Input Device ON Device OFF 1 5 VSTB VCC GND VSTB 0 5 V RLLoad Resistor4 32 Rthja Thermal Resistance Junction to Ambient1 SO8 MiniSO8 150 190 C W 1 This thermal resistance can be reduced with a suitable PCB layout see Power Derating Curves Fig 24 TS4890 3 31 ELECTRICAL CHARACTERISTICS VCC 5V GND 0V Tamb 25 C unless otherwise specified VCC 3 3V GND 0V Tamb 25 C unless otherwise specified SymbolParameterMin Typ Max Unit ICC Supply Current No input signal no load 68mA ISTANDBY Standby Current 1 No input signal Vstdby GND RL 8 1 Standby mode is actived when Vstdby is tied to GND 101000nA Voo Output OffsetVoltage No input signal RL 8 520mV Po Output Power THD 1 Max f 1kHz RL 8 1W THD N Total Harmonic Distortion Noise Po 250mW rms Gv 2 20Hz f 20kHz RL 8 0 15 PSRR Power Supply Rejection Ratio2 f 217Hz RL 8 RFeed 22K Vripple 200mV rms 2 Dynamic measurements 20 log rms Vout rms Vripple Vripple is the surimposed sinus signal to Vcc f 217Hz 77dB M Phase Margin at Unity Gain RL 8 CL 500pF 70Degrees GM Gain Margin RL 8 CL 500pF 20dB GBP Gain Bandwidth Product RL 8 2MHz SymbolParameterMin Typ Max Unit ICC Supply Current No input signal no load 5 58mA ISTANDBY Standby Current 1 No input signal Vstdby GND RL 8 1 Standby mode is actived when Vstdby is tied to GND 101000nA Voo Output OffsetVoltage No input signal RL 8 520mV Po Output Power THD 1 Max f 1kHz RL 8 450mW THD N Total Harmonic Distortion Noise Po 250mW rms Gv 2 20Hz f 20kHz RL 8 0 15 PSRR Power Supply Rejection Ratio2 f 217Hz RL 8 RFeed 22K Vripple 200mV rms 2 Dynamic measurements 20 log rms Vout rms Vripple Vripple is the surimposed sinus signal to Vcc f 217Hz 77dB M Phase Margin at Unity Gain RL 8 CL 500pF 70Degrees GM Gain Margin RL 8 CL 500pF 20dB GBP Gain Bandwidth Product RL 8 2MHz TS4890 4 31 VCC 2 6V GND 0V Tamb 25 C unless otherwise specified VCC 2 2V GND 0V Tamb 25 C unless otherwise specified SymbolParameterMin Typ Max Unit ICC Supply Current No input signal no load 58mA ISTANDBY Standby Current 1 No input signal Vstdby GND RL 8 1 Standby mode is actived when Vstdby is tied to GND 101000nA Voo Output OffsetVoltage No input signal RL 8 520mV Po Output Power THD 1 Max f 1kHz RL 8 260mW THD N Total Harmonic Distortion Noise Po 200mW rms Gv 2 20Hz f 20kHz RL 8 0 15 PSRR Power Supply Rejection Ratio2 f 217Hz RL 8 RFeed 22K Vripple 200mV rms 2 Dynamic measurements 20 log rms Vout rms Vripple Vripple is the surimposed sinus signal to Vcc f 217Hz 77dB M Phase Margin at Unity Gain RL 8 CL 500pF 70Degrees GM Gain Margin RL 8 CL 500pF 20dB GBP Gain Bandwidth Product RL 8 2MHz SymbolParameterMin Typ Max Unit ICC Supply Current No input signal no load 58mA ISTANDBY Standby Current 1 No input signal Vstdby GND RL 8 1 Standby mode is actived when Vstdby is tied to GND 101000nA Voo Output OffsetVoltage No input signal RL 8 520mV Po Output Power THD 1 Max f 1kHz RL 8 180mW THD N Total Harmonic Distortion Noise Po 200mW rms Gv 2 20Hz f 20kHz RL 8 0 15 PSRR Power Supply Rejection Ratio2 f 217Hz RL 8 RFeed 22K Vripple 100mV rms 2 Dynamic measurements 20 log rms Vout rms Vripple Vripple is the surimposed sinus signal to Vcc f 217Hz 77dB M Phase Margin at Unity Gain RL 8 CL 500pF 70Degrees GM Gain Margin RL 8 CL 500pF 20dB GBP Gain Bandwidth Product RL 8 2MHz TS4890 5 31 REMARKS 1 All measurements except PSRR measurements are made with a supply bypass capacitor Cs 100 F 1 External resistors are not needed for having better stability when supply Vcc down to 3V The quiescent current still remains the same 2 The standby response time is about 1 s ComponentsFunctional Description Rin Inverting input resistor which sets the closed loop gain in conjunction with Rfeed This resistor also forms a high pass filter with Cin fc 1 2 x Pi x Rin x Cin CinInput coupling capacitor which blocks the DC voltage at the amplifier input terminal RfeedFeed back resistor which sets the closed loop gain in conjunction with Rin CsSupply Bypass capacitor which provides power supply filtering CbBypass pin capacitor which provides half supply filtering Cfeed Low pass filter capacitor allowing to cut the high frequency low pass filter cut off frequency 1 2 x Pi x Rfeed x Cfeed RstbPull down resistor which fixes the right supply level on the standby pin GvClosed loop gain in BTL configuration 2 x Rfeed Rin TS4890 6 31 Fig 1 Open Loop Frequency Response Fig 3 Open Loop Frequency Response Fig 5 Open Loop Frequency Response Fig 2 Open Loop Frequency Response Fig 4 Open Loop Frequency Response Fig 6 Open Loop Frequency Response 0 3110100100010000 40 20 0 20 40 60 220 200 180 160 140 120 100 80 60 40 20 0 Vcc 5V RL 8 Tamb 25 C Gain dB Frequency kHz Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 240 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 33V RL 8 Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 240 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 2 6V RL 8 Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 5V ZL 8 560pF Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 240 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 3 3V ZL 8 560pF Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 240 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 2 6V ZL 8 560pF Tamb 25 C Gain Phase Phase Deg TS4890 7 31 Fig 7 Open Loop Frequency Response Fig 9 Open Loop Frequency Response Fig 11 Open Loop Frequency Response Fig 8 Open Loop Frequency Response Fig 10 Open Loop Frequency Response Fig 12 Open Loop Frequency Response 0 3110100100010000 40 20 0 20 40 60 80 240 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 2 2V RL 8 Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 100 220 200 180 160 140 120 100 80 Gain dB Frequency kHz Vcc 5V CL 560pF Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 100 240 220 200 180 160 140 120 100 80 Gain dB Frequency kHz Vcc 2 6V CL 560pF Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 240 220 200 180 160 140 120 100 80 60 40 20 0 Gain dB Frequency kHz Vcc 2 2V RL 8 560pF Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 100 240 220 200 180 160 140 120 100 80 Gain dB Frequency kHz Vcc 3 3V CL 560pF Tamb 25 C Gain Phase Phase Deg 0 3110100100010000 40 20 0 20 40 60 80 100 240 220 200 180 160 140 120 100 80 Gain dB Frequency kHz Vcc 2 2V CL 560pF Tamb 25 C Gain Phase Phase Deg TS4890 8 31 Fig 13 Power Supply Rejection Ratio PSRR vs Power supply Fig 15 Power Supply Rejection Ratio PSRR vs Bypass Capacitor Fig 17 Power Supply Rejection Ratio PSRR vs Feedback Resistor Fig 14 Power Supply Rejection Ratio PSRR vs Feedback Capacitor Fig 16 Power Supply RejectionRatio PSRR vs Input Capacitor Fig 18 Pout THD N 1 vs Supply Voltage vs RL 10100100010000100000 80 70 60 50 40 30 Vcc 5V to 2 2V Cb 1 F 0 1 F Vripple 200mVrms Rfeed 22k Input floating RL 8 Tamb 25 C PSRR dB Frequency Hz 10100100010000100000 80 70 60 50 40 30 20 10 Cb 47 F Cb 100 F Cb 10 F Cb 1 FVcc 5 to 2 2V Rfeed 22k Rin 22k Cin 1 F Rg 100 RL 8 Tamb 25 C PSRR dB Frequency Hz 10100100010000100000 80 70 60 50 40 30 20 10 Rfeed 22k Rfeed 10k Rfeed 47k Rfeed 110k Vcc 5 to 2 2V Cb 1 F 0 1 F Vripple 200mVrms Input floating RL 8 Tamb 25 C PSRR dB Frequency Hz 10100100010000100000 80 70 60 50 40 30 20 10 Cfeed 680pF Cfeed 330pF Cfeed 150pF Cfeed 0 Vcc 5 to2 2V Cb 1 F 0 1 F Rfeed 22k Vripple 200mVrms Input floating RL 8 Tamb 25 C PSRR dB Frequency Hz 10100100010000100000 60 50 40 30 20 10 Cin 22nF Cin 100nF Cin 220nF Cin 330nF Cin 1 F Vcc 5 to 2 2V Rfeed 22k Rin 22k Cb 1 F Rg 100 RL 8 Tamb 25 C PSRR dB Frequency Hz 2 53 03 54 04 55 0 0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 32 16 4 6 Gv 2 10 Cb 1 F F 1kHz BW 125kHz Tamb 25 C 8 Output power 1 THD N W Vcc V TS4890 9 31 Fig 19 Pout THD N 10 vs Supply Voltage vs RL Fig 21 Power Dissipation vs Pout Fig 23 Power Dissipation vs Pout Fig 20 Power Dissipation vs Pout Fig 22 Power Dissipation vs Pout Fig 24 Power Derating Curves 2 53 03 54 04 55 0 0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 1 6 1 8 2 0 4 6 8 16 32 Gv 2 10 Cb 1 F F 1kHz BW 125kHz Tamb 25 C Output power 10 THD N W Vcc V 0 00 20 40 60 8 0 0 0 1 0 2 0 3 0 4 0 5 0 6 RL 4 RL 8 Vcc 3 3V F 1kHz THD N 1 RL 16 Power Dissipation W Output Power W 0 00 10 20 3 0 00 0 05 0 10 0 15 0 20 0 25 0 30 0 35 0 40 Vcc 2 6V F 1kHz THD N 1 RL 16 RL 8 RL 4 Power Dissipation W Output Power W 0 00 20 40 60 81 01 21 4 0 0 0 2 0 4 0 6 0 8 1 0 1 2 1 4 RL 16 RL 8 Vcc 5V F 1kHz THD N 1 RL 4 Power Dissipation W Output Power W 0 00 10 20 30 4 0 00 0 05 0 10 0 15 0 20 0 25 0 30 0 35 0 40 RL 4 RL 8 Vcc 2 6V F 1kHz THD N 1 RL 16 Power Dissipation W Output Power W 0255075100125150 0 0 0 2 0 4 0 6 0 8 1 0 1 2 MiniSO8SO8 MiniSO8on demoboard SO8 on demoboard Power Dissipation W Ambiant Temperature C TS4890 10 31 Fig 25 THD N vs Output Power Fig 27 THD N vs Output Power Fig 29 THD N vs Output Power Fig 26 THD N vs Output Power Fig 28 THD N vs Output Power Fig 30 THD N vs Output Power 1E 30 010 11 0 1 1 10 Rl 4 Vcc 5V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 4 Vcc 3 3V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 4 Vcc 2 6V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 4 Vcc 5V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 4 Vcc 3 3V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 4 Vcc 2 6V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W TS4890 11 31 Fig 31 THD N vs Output Power Fig 33 THD N vs Output Power Fig 35 THD N vs Output Power Fig 32 THD N vs Output Power Fig 34 THD N vs Output Power Fig 36 THD N vs Output Power 1E 30 010 1 0 1 1 10 RL 4 Vcc 2 2V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 5V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 3 3V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 4 Vcc 2 2V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 5V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 3 3V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W TS4890 12 31 Fig 37 THD N vs Output Power Fig 39 THD N vs Output Power Fig 41 THD N vs Output Power Fig 38 THD N vs Output Power Fig 40 THD N vs Output Power Fig 42 THD N vs Output Power 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 6V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 2V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20Hz 20kHz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 5V Gv 2 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 6V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 2V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 5V Gv 10 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W TS4890 13 31 Fig 43 THD N vs Output Power Fig 45 THD N vs Output Power Fig 47 THD N vs Output Power Fig 44 THD N vs Output Power Fig 46 THD N vs Output Power Fig 48 THD N vs Output Power 1E 30 010 11 0 1 1 10 RL 8 Vcc 3 3V Gv 2 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 6V Gv 2 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 2V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 1 1 10 RL 8 Vcc 3 3V Gv 10 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 6V Gv 10 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W 1E 30 010 1 0 1 1 10 RL 8 Vcc 2 2V Gv 10 Cb 0 1 F Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W TS4890 14 31 Fig 49 THD N vs Output Power Fig 51 THD N vs Output Power Fig 53 THD N vs Output Power Fig 50 THD N vs Output Power Fig 52 THD N vs Output Power Fig 54 THD N vs Output Power 1E 30 010 11 0 01 0 1 1 10 RL 16 Vcc 5V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 01 0 1 1 10 RL 16 Vcc 3 3V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 01 0 1 1 10 RL 16 Vcc 2 6V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 11 0 01 0 1 1 10 RL 16 Vcc 5V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz1kHz THD N Output Power W 1E 30 010 1 0 01 0 1 1 10 RL 16 Vcc 3 3V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 1E 30 010 1 0 01 0 1 1 10 RL 16 Vcc 2 6V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz20Hz 1kHz THD N Output Power W TS4890 15 31 Fig 55 THD N vs Output Power Fig 57 THD N vs Frequency Fig 59 THD N vs Frequency Fig 56 THD N vs Output Power Fig 58 THD N vs Frequency Fig 60 THD N vs Frequency 1E 30 010 1 0 01 0 1 1 10 RL 16 Vcc 2 2V Gv 2 Cb Cin 1 F BW 125kHz Tamb 25 C 20Hz 20kHz 1kHz THD N Output Power W 20100100010000 0 1 1 Pout 600mW Pout 1 2W RL 4 Vcc 5V Gv 2 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Pout 270mW Pout 540mW RL 4 Vcc 3 3V Gv 2 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz 1E 30 010 1 0 01 0 1 1 10 RL 16 Vcc 2 2V Gv 10 Cb Cin 1 F BW 125kHz Tamb 25 C 20kHz 20Hz 1kHz THD N Output Power W 20100100010000 0 01 0 1 1 Pout 600mW Pout 1 2W RL 4 Vcc 5V Gv 10 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Pout 270mW Pout 540mW RL 4 Vcc 3 3V Gv 10 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz TS4890 16 31 Fig 61 THD N vs Frequency Fig 63 THD N vs Frequency Fig 65 THD N vs Frequency Fig 62 THD N vs Frequency Fig 64 THD N vs Frequency Fig 66 THD N vs Frequency 20100100010000 0 1 1 Pout 120mW Pout 240mW RL 4 Vcc 2 6V Gv 2 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Pout 88mW Pout 175mW RL 4 Vcc 2 2V Gv 2 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 5V Gv 2 Pout 900mW BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Pout 240 120mW RL 4 Vcc 2 6V Gv 10 Cb 1 F BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 RL 4 Vcc 2 2V Gv 10 Cb 1 F BW 125kHz Tamb 25 C Pout 175mW Pout 88mW THD N Frequency Hz 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 5V Gv 2 Pout 450mW BW 125kHz Tamb 25 C THD N Frequency Hz TS4890 17 31 Fig 67 THD N vs Frequency Fig 69 THD N vs Frequency Fig 71 THD N vs Frequency Fig 68 THD N vs Frequency Fig 70 THD N vs Frequency Fig 72 THD N vs Frequency 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 5V Gv 10 Pout 900mW BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 3 3V Gv 2 Pout 400mW BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 3 3V Gv 10 Pout 400mW BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 5V Gv 10 Pout 450mW BW 125kHz Tamb 25 C THD N Frequency Hz 20100100010000 0 1 1 Cb 0 1 F Cb 1 F RL 8 Vcc 3 3V Gv 2 Pout 20
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论