河南中考数学10年压轴题集锦.doc_第1页
河南中考数学10年压轴题集锦.doc_第2页
河南中考数学10年压轴题集锦.doc_第3页
河南中考数学10年压轴题集锦.doc_第4页
河南中考数学10年压轴题集锦.doc_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河南中考数学压轴题汇集(2010)23(11分)在平面直角坐标系中,已知抛物线经过A,B,C三点(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,AMB的面积为S求S关于m的函数关系式,并求出S的最大值(3)若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能够使得点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标(2011)23. (11分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为8.(1)求该抛物线的解析式; (2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PEAB于点E.设PDE的周长为l,点P的横坐标为x,求l关于x的函数关系式,并求出l的最大值;连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在y轴上时,直接写出对应的点P的坐标.第23题xyABCDPO(2012)23.(11分)如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的纵坐标为3。点P是直线AB下方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线交直线AB于点C,作PDAB于点C,作PDAB于点D。(1)求a、b及sinACP的值;(2)设点P的横坐标为m. 用含m的代数式表示线段PD的长,并求出线段PD长的最大值;连接PB,线段PC把PDB分成两个三角形,是否存在合适的m值,使这两个三角形的面积之比为9:10?若存在,直接写m的值;若不存在,说明理由。(2013)23.(11分)如图,抛物线y=-x2+bx+c与直线交于C、D两点,其中点C在y轴上,点D的坐标为. 点P是y轴右侧的抛物线上一动点,过点P作PEx轴于点E,交CD于点F.(1)求抛物线的解析式;(2)若点P的横坐标为m,当m为何值时,以O、C、P、F为顶点的四边形是平行四边形?请说明理由.(3)若存在点P,使PCF=45,请直接写出相应的点P的坐标.OCDBA备用图yxPEOFCDBAxy(2014)23. (11分)如图,抛物线y=x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线与y轴交于点C,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PFx轴于点F,交直线CD于点E.设点P的横坐标为m。(1)求抛物线的解析式;(2)若PE =5EF,求m的值;(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。(2015)23.(11分)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PFBC于点F. 点D、E的坐标分别为(0,6),(-4,0),连接PD,PE,DE. (1)请直接写出抛物线的解析式;(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”. 请直接写出所有“好点”的个数,并求出PDE的周长最小时“好点”的坐标.CBAyOEDx备用图PEOFCDBA图xy(2016)23. (11分)如图1,直线交轴于点A,交轴于点C(0,4).抛物线经过点A,交轴于点B(0,-2).点P为抛物线上一个动点,经过点P作轴的垂线PD,过点B作BDPD于点D,连接PB,设点P的横坐标为.(1)求抛物线的解析式;(2)当BDP为等腰直角三角形时,求线段PD的长;(3)如图2,将BDP绕点B逆时针旋转,得到BDP,且旋转角PBP=OAC,当点P的对应点P落在坐标轴上时,请直接写出点P的坐标.(2017河南)23如图,直线y=x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=x2+bx+c经过点A,B(1)求点B的坐标和抛物线的解析式;(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N点M在线段OA上运动,若以B,P,N为顶点的三角形与APM相似,求点M的坐标;点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”请直接写出使得M,P,N三点成为“共谐点”的m的值(2010)(2011)23.(1)对于,当y=0,x=2.当x=-8时,y=-A点坐标为(2,0),B点坐标为1分由抛物线经过A、B两点,得解得3分(2)设直线与y轴交于点M当x=0时,y=. OM=.点A的坐标为(2,0),OA=2.AM=4分OM:OA:AM=34:5.由题意得,PDE=OMA,AOM=PED=90,AOMPED.DE:PE:PD=34:5.5分点P是直线AB上方的抛物线上一动点,PD=yP-yD=.6分7分8分满足题意的点P有三个,分别是11分【解法提示】当点G落在y轴上时,由ACPGOA得PC=AO=2,即,解得,所以当点F落在y轴上时,同法可得,(舍去).(2012) (2013)(2014)(2015)(1)【分析】由题意设抛物线解析式为,将A、C两点坐标代入即可.解:抛物线的解析式为:.(3分)【解法提示】由题意设抛物线解析式为,的正方形OABC的边长为8,点A(-8,0)、C(0,8),,解得,抛物线解析式为.(2)【分析】设P点坐标为,表示出PF的长度,构造PD所在的直角三角形,表示PD的长度,通过求差法得到PD-PF的值.解:M(3)【分析】通过将PDE的面积进行转化,得到其面积的表达式,根据点P横坐标m的取值范围,确定面积为整数时“好点”的个数,再把PDE周长的最小值转化成PE+PF的和最小,进而知道当P、E、F三点共线时PDE周长的最小,确定点P的坐标.解:好点共11个;在点P运动时,DE的大小不变,PE与PD的和最小时,PDE的周长最小,PD-PF=2,PD=PF+2,PE+PD=PE+PF+2,当P,E,F三点共线时,PE+PF最小,此时,点P,E的横坐标为-4,将x=-4代入,得y=6,P(-4,6),此时PDE周长最小,且PDE的面积为12,点P恰为“好点”.PDE周长最小时点P的坐标为(-4,6).【解法提示】PDE的面积由于-8x0,可得4S13,所以S的整数值为10个.由图象可知,当S=12时,对应的“好点”有2个,所以“好点”共有11个.(2016)23.(1)由直线过点C(0,4),得=4. 当=0时,解得=3. A(3,0). 1分抛物线经过点A(3,0)、B(0,-2),.抛物线的解析式为. 3分(2)点P的横坐标为,P(),D(,). 4分若BDP为等腰直角三角形,则PD=BD.当点P在直线BD上方时,PD=.(I)若点P在轴左侧,则0,BD=.=,1=0(舍去),2=. 6分当点P在直线BD下方时,0,BD=,PD=.=,1=0(舍去),2=. 7分综上,=或. 即当BDP为等腰直角三角形,PD的长为或.8分(3),. 11分【提示】PBP=OAC,OA=3,OC=4,AC=5, sinPBP=,cosPBP=.当点P落在轴上时,过点D作DN轴,垂足为N,交BD于点M,DBD=NDP=PBP.如图1,ND- MD=2,即.如图2,ND+ MD=2,即.,.当点P落在轴上时,如图3,过点D作DM轴,交BD于点M,过点P作PN轴,交MD的延长线于点N,DBD=NDP=PBP.PN=BM,即.(2017)【解答】解:(1)y=x+c与x轴交于点A(3,0),与y轴交于点B,0=2+c,解得c=2,B(0,2),抛物线y=x2+bx+c经过点A,B,解得,抛物线解析式为y=x2+x+2;(2)由(1)可知直线解析式为y=x+2,M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N,P(m,m+2),N(m,m2+m+2),PM=m+2,PA=3m,PN=m2+m+2(m+2)=m2+4m,BPN和APM相似,且BPN=APM,BNP=AMP=90或NBP=AMP=90,当BNP=90时,则有BNMN,BN=OM=m,=,即=,解得m=0(舍去)或m=2.5,M(2.5,0);当NBP=90时,则有=,A(3,0),B(0,2),P(m,m+2),BP=m,AP=(3m),=,解得m=0(舍去)或m=,M(,0);综上可知当以B,P,N为顶点的三角形与APM相似时,点M的坐标为(2.5,0)或(,0);由可知M(m,0),P(m,m+2),N(m,m2+m+2),M,P,N三点为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论