




免费预览已结束,剩余7页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
永磁无刷直流电机控制系统仿真建模研究窦满峰,雷金莉 (西北工业大学 自动化学院 陕西 西安 710072)摘 要:从永磁无刷直流电机(BLDCM)的工作原理和结构出发,在分析了BLDCM数学模型的基础上,提出了一种无刷直流电机系统建模仿真方法。在Matlab/Simulink 中,采用模块化建模方法和M文件编写S函数,建立了BLDCM 本体模块、控制模块、逆变器模块和逻辑换相模块,再进行功能模块的有机整合,形成了永磁无刷直流电机双闭环调速系统的仿真模型。利用该模型进行了电机动静态性能的仿真研究,仿真结果与理论分析一致,表明该方法建立的BLDCM仿真模型合理、有效。该模型参数易于修改和替换,可方便的用于其他控制算法仿真研究,为BLDCM的控制算法的研究提供了新的方法。关键词:无刷直流电机(BLDCM); Matlab/Simulink;建模;仿真中图分类号:TP391 文献标识码:AModeling and Simulation of the Permanent Magnetic Brushless DC Motor Control SystemDou Manfeng, Lei Jinli(College of Automation Northwestern Polytechnical University Xian, Shaanxi, 710072, China)Abstract: Based on the principle and structure of the permanent magnetic brushless DC motor (BLDCM),and analyzing the mathematic mode, a novel method for modeling and simulation of BLDCM control system was presented in this paper. In Matlab/Simulink, by the modular design and S-functions programming with M-files, the model of BLDCM block, control block, inverter block and logic phase switcher block could be established, the model of the BLDCM double loop of control system was composed of the isolated functional blocks. The static and dynamic performances of BLDCM were simulated, and the reasonability and validity were testified by the coincidence of the simulation results and theory analysis. The parameter of this method is prone to modification substitution, also suitable for verifying the reasonability of other control algorithms and provides a new way for further research of the BLDCM.Key words: brushless DC motor (BLDCM); Matlab/Simulink; modeling; simulation; 1引言随着新型永磁材料、自动控制技术、电力电子技术以及电子技术的迅速发展,永磁无刷直流电机(BLDCM)也随之发展起来并已成熟为一种新型的机电一体化设备,它是现代工业设备中重要的运动部件。永磁无刷直流电机采用电子换相器替代直流电机的机械换向器,实现直流到交流的逆变,采用位置传感器控制绕组电流的切换,既保持了直流电机的良好调速特性,又具有交流电机结构简单、运行可靠、维护方便的特点。BLDCM以体积小、速度高、可靠性好等优点广泛的应用航空航天、机器人、电动汽车、仪器仪表、家用电器以及数控装置等领域1-2。近年来,永磁无刷直流电机的应用领域不断扩大,其控制系统的要求也随之越来越高。比如在伺服系统中,要求系统的动静态性能好、控制精度高、设计简易、成本低廉、开发周期短等。永磁无刷直流电机控制系统设计的过程中,为了缩短设计周期、降低研究成本和风险,通常先采用计算机仿真技术,建立无刷直流电机控制系统的仿真模型,对电机转速、转矩等参数变化进行分析,施加不同的控制算法以寻求最佳参数和设计最合理的系统模型,可以有效的节省控制系统设计时间。因此,如何有效的建立永磁无刷直流电机控制系统的精确仿真模型成为电机控制算法设计人员迫切需要解决的关键问题,也是目前的一个研究热点问题3。本文在分析无刷直流电机的工作原理和数学模型的基础上,借助于Matlab/Simulink仿真软件,提出了一种建立永磁无刷直流电机系统仿真模型的新方法。利用Simulink中S函数和SimPowerSystems工具箱建立了永磁无刷直流电机调速系统的仿真模型,并根据电机的参数和运行状况进行了调速系统的仿真实验研究,结果表明,通过该方法建立的仿真模型合理、有效,加快了实际系统设计和调试的进程。2永磁无刷直流电机的动态数学模型永磁无刷直流电动机由电动机本体、控制器和转子位置传感器三部分组成,其原理结构图如图1所示。电动机本体主要包括带有电枢绕组的定子和永磁转子,它实际上是一个永磁同步电动机4。在电动机内部,安装有位置传感器,用来检测主转子在运行过程中的位置。它与电子换向线路一起,代替了有刷直流电动机的机械换向装置。图1 永磁无刷直流电动机工作原理结构框图无刷直流电动机的基本物理量有电磁转矩、电枢电流、反电动势和转速等,这些物理量的计算与电动机的气隙磁场分布、绕组形式有十分密切的关系。对于永磁无刷直流电机,其气隙磁场波形一般为方波,定子绕组中感应的电动势为梯形波,通常采用方波电流驱动,方波电流应位于梯形波反电动势的平顶宽度范围内,如图2所示。图2 BLDCM气隙磁场、反电动势和电流波形由于永磁无刷直流电机的气隙磁场、反电动势以及电流是非正弦的,因此,采用直、交轴坐标变换已不是有效的分析方法。而在分析和仿真BLDCM控制系统时,直接利用电机原有的相变量来建立数学模型却比较方便,又能获得较准确的结果。本文以两相导通星形三相六状态为例,分析BLDC的数学模型及电磁转矩等特性。为了便于分析,假定:(1) 三相绕组完全对称,气隙磁场为方波,定子电流、转子磁场分布皆对称;(2) 忽略齿槽、换相过程和电枢反应等的影响;(3) 电枢绕组在定子内表面均匀连续分布;(4) 磁路不饱和,不计涡流和磁滞损耗。根据永磁无刷直流电机的特性,可建立其电压、转矩以及运动方程。2.1 永磁无刷直流电机电压方程4-6BLDCM的定子三相绕组电压平衡方程可表示为: (1)式中:、为三相定子绕组相电压(V),、为三相定子绕组相电流(A),、为三相定子绕组反电动势(V), 为三相定子绕组的电阻(),为三相定子绕组的自感(H),为三相定子绕组之间的互感(H)。由于定子三相绕组完全对称,为星形连接,且没有中线,故: (2)且: (3)则式(1)所示的电压平衡方程可简化为: (4)根据式(4)的电压平衡方程,BLDCM的每相电路可看成是由定子绕组电阻R、电感(L-M)以及反电动势e串联而成,可以将其表示为图3所示的等效电路。图3 BLDCM等效电路图2.2 转矩方程永磁无刷直流电机的电磁转矩是由定子绕组中的电流与转子磁钢产生的磁场相互作用而产生的。定子绕组产生的电磁转矩可表示为: (5)其中:为电磁转矩(Nm),为电机机械转速(rad/s),。由(5)式可看出,无刷直流电动机的电磁转矩方程与普通直流电动机相似,其电磁转矩大小与磁通和电流幅值成正比,所以控制逆变器输出方波电流的幅值即可控制无刷直流电动机的转矩。2.3 运动方程 无刷直流电机的电磁转、负载转矩以及转速之间的关系可用电机的机械运动方程来描述,如下式所示。 (6)式中,为负载转矩(Nm),为阻尼系数(Nms),为转子的转动惯量(kgm2), 为转子机械角加速度。3永磁无刷直流电机调速系统仿真模型建立3.1 系统组成永磁无刷直流电机调速系统一般由电机本体、控制器和电压逆变器三部分构成,永磁无刷直流电机调速系统框图如图4所示。为使调速系统具有较好的动静态性能,通常采用转速、电流双闭环串级控制。由于PID控制器算法简单,稳态精度高,易于实现,广泛的应用于永磁无刷直流电机调速系统中7。本文在设计仿真模型时,转速环和电流环均采用PID调节器,以实现转速、电流双闭环数字串级控制。图4 永磁无刷直流电机调速系统框图在Matlab6.5的Simulink环境下,根据永磁无刷直流电机的数学模型,利用S函数和SimPowerSystem 工具箱,采用模块化建模方法,将图4所示的控制系统分割成功能独立的子模块8。图5给出了模块化的永磁无刷直流电机调速系统的整体模型,其中主要的功能模块有:BLDCM本体模块、控制模块、逻辑换相模块和三相电压逆变模块10。图5 永磁无刷直流电机系统仿真模型3.2 电机本体模块在永磁无刷直流电机调速系统的整体模型中,BLDCM本体模块是最重要的模块,也是最难实现的部分。BLDCM模块建立的依据即为电机的数学模型,在该模块中,其输入信号有三相电压Ua、Ub、Uc和负载转矩TL,输出信号有三相电流Ia、Ib、Ic,转子位置HA、HB、HC,转速n和电磁转矩Tem。1. 电压方程实现由电压平衡方程式(4)可知,要获得三相电流信号Ia、Ib、Ic,必需首先求得三相反电动势信号ea、eb、ec。而BLDCM建模过程中,反电动势的求取方法一直是较难解决的问题,反电动势波形不理想会造成转矩脉动增大、相电流波形不理想等问题,严重时会导致换向失败,电机失控,因此,获得理想的反电动势波形是BLDCM仿真建模的关键问题之一9。为获得恒定的电磁转矩,将永磁无刷直流电机的定子反电动势设计为梯形波,其平顶宽度大于120,梯形波的幅值与电机转速成正比,计算公式如式(7)所示。 (7)式中:ke为反电势常数,。永磁无刷直流电机的定子反电动势的方向与转子的位置相关。以二相导通星形三相六状态为例,BLDCM定子三相反电动势的波形如图6所示。图6 三相反电势波形图6中,根据转子位置将一个运行周期0-360分为6个阶段,每60为一个换向阶段,每一相的每一个运行阶段都可用一段直线进行表示,根据某一时刻的转子位置和转速信号,确定该时刻各相所处的运行状态,通过直线方程即可求得反电动势波形。以第一阶段0-60为例,A相反电动势处于正向最大值E,B相反电动势处于负向最大值-E,C相反电动势处于换向阶段,由正的最大值E 沿斜线规律变化到负的最大值-E。根据转子位置和角速度信号,就可以求出各相反电动势变化轨迹的直线方程;其它5个阶段,如此类推,按照这种规律即可得到定子反电动势与转子位置和转速之间的函数关系,如表1 所示。表1 转子位置与反电势关系表转子位置eaebec0-6060-120120-180180-240240-300300-360从表1可以看出,定子反电动势是转子位置和转速的函数,在Simulink中可用S函数编程实现,采用M文件编程,主要程序如下11。程序中u (1)为电机转过的电角度,u (2)为电机的转速,p为电机的极对数,ke为反电势系数。function sys=mdlOutputs (t, x, u, flag) sita=p*u (2); while (sita =360) sita = sita -360;endif (0= sita) & (sita 60) sys= ke*u (1),-ke *u (1), ke*u (1) *(1-sita/30), 1, 1,0; elseif (60= sita) & (sita 120) sys= ke*u (1), ke*u (1) *(sita-60)/30-1),-ke *u (1), 0, 1,0; elseif (120= sita) & (sita 180) sys= ke*u (1) *(120-sita)/30+1), ke*u (1), -ke *u (1), 0, 1, 1; elseif (180= sita) & (sita 240) sys= -ke*u (1), ke*u (1), ke *u (1) *(sita-90)/30-1), 0, 0, 1; elseif (240= sita) & (sita 300) sys= -ke*u (1), ke*u (1) *(240-sita)/30+1), ke *u (1), 1, 0, 1;elseif (300= sita) & (sita 360) sys= ke*u (1) *(sita-300)/30-1), -ke*u (1), ke *u (1), 1, 0, 0; end通过S函数得到三相定子反电动势以及转子位置信号,结合电压方程即可得到三相电流。仿真模型如图7所示。图7 电压平衡方程模型2. 转矩计算根据电磁转矩方程(5)可知,电磁转矩与三相相电流、反电动势以及转速有关,所以在Simulink中建立转矩模块时,模块输入信号为三相相电流、反电动势以及转速,通过加法和乘法计算,即可得到电磁转矩,如图8所示。图8 转矩计算模型3. 转速计算根据BLDCM的运动方程,即可搭建出如图9所示的转速模块。电磁转矩、负载转矩以及摩擦转矩经过加法、乘法和积分运算后,得到转子角速度信号,转子角速度乘以即为转速信号;对转子角速度进行积分运算即可得到转子位置信号。图9 转速计算模型把电压平衡方程模块、转矩计算模块和转速计算模块集合在一起就构成了永磁无刷直流电机的本体模型。3.3 控制模块 控制模块包括转速控制和电流控制,在本文设计的仿真模型中,转速环和电流环均采用数字PI调节器,如图10所示。参考转速信号和实际转速反馈信号进行比较,其差值输入到速度PI调节器中,输出为参考电流信号。速度调节器输出的参考电流信号与实际电流反馈值比较后,作为电流PI调节器的输入,其输出与周期序列信号进行合成,形成PWM逻辑控制信号,以驱动电压逆变器。其中,Saturation 饱和限幅模块将输出的参考电流信号限定在要求范围内。图10 转速、电流控制模型3.4 逻辑换相模块逻辑换相模块接收转子位置信号,结合控制模块输出的PWM信号,输出6个电机换相及速度控制脉冲。输入为三相霍尔位置信号HA、HB、HC和PWM信号,输出为三相逆变器功率管的通断控制信号Q1Q6。其中,Q1、Q3、Q5控制上侧功率管,Q2、Q4、Q6控制下侧功率管。三相逆变器采用上管调制的方式,输入输出信号间的逻辑关系可表示为。, , , , 按照上面的逻辑关系,在Simulink中采用逻辑运算元件建立的逻辑换相模型如图11所示。图11 逻辑换相模型3.5 电压逆变模块电压逆变模块实现的是逆变器功能,其输入为逻辑换相模块输出的脉冲信号,输出为三相端电压。建立逆变器模型,可直接采用Simulink的SimPowerSystem工具箱提供的MOSFET模块和直流电源模块构成,电压逆变器的三相输出A、B、C端分别加在三个电压表上,该模型输出的电压信号可直接作为永磁无刷直流电机本体的电压输入信号,如图12所示。三相电压逆变器的各个功率管根据逻辑换相模块输出的换相脉冲信号,顺序导通和关断。图12 三相逆变器模型4仿真实验4.1 仿真对象本文在Matlab/Simulink中建立了转速、电流双闭环数字控制系统的仿真模型,为了验证模型的有效性,对系统进行仿真实验。仿真实验用永磁无刷直流电机参数如下:电机工作状态为三相六状态,电机极对数p=2,额定电压UN=270V,额定转速n=2500r/min,相电阻R=0.39,相电感L-M=0.0005H,转动惯量J=0.2915kgm2,电势系数ke=0.057V/rads-1。4.2 仿真结果分析为了验证所设计的永磁无刷直流电机控制系统仿真模型的动静态性能,系统空载起动,待进入稳态后,在t0. 5s 时突加负载TL5Nm,仿真结果如图13 所示。 (a) 转速曲线 (b)电磁转矩曲线 (c)一相电流波形 (d)一相反电势波形图13 仿真结果曲线由仿真波形可以看出,在n2500r/min 的参考转速下,系统响应快速且平稳,电机启动时系统保持转矩恒定,转矩脉动较小;在t0. 5s 时突加负载,系统能迅速恢复到平衡状态,稳态运行时无静差;相电流和反电势波形与理论分析波形一致,证明了本文所提出的BLDCM仿真模型正确。5结论本文在Matlab/Simulink环境下,依据永磁无刷直流电机数学模型,采用模块化建模方法,并结合S函数构建了永磁无刷直流电机速度、电流双闭环控制系统仿真模型,其中速度和电流环均采用经典的PID控制方法。仿真实验结果表明:系统响应快且运行平稳,具有较好的静、动态特性,本文所设计的模型行之有效。由于该仿真模型采用模块化方法设计,可以方便得修改电机参数,改换或改进控制策略也十分便捷。因此,它为分析和设计无刷直流电机控制系统提供了有效手段和工具,也为实际电机控制系统的设计和调试提供了新的思路。参考文献1 刘刚,王志强,房建成. 永磁无刷直流电机控制技术与应用M. 北京:机械工业出版社,20082 Hansen, H.B., Kallesoe, C.S., Bendtsen, J.D. A Hybrid Model of a Brushless DC MotorC. Proceedings of IEEE 2007 CCA,2007
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鹅苗订购合同(标准版)
- 花椒平台合同(标准版)
- 排水管网绿化与环境保护方案
- 排水管网压力监测与调整方案
- 弹性工时合同(标准版)
- 城市排水设施抗震加固方案
- 玉米粉产品技术改进与生产能力提升
- 混凝土浇筑工艺改进
- 现代物流装备生产线项目可行性分析报告(参考范文)
- 地下管网及设施更新改造工程可行性分析报告
- 2025版离职合同范本
- 2025光大银行个人经营性贷款借款合同
- 国有企业采购管理办法
- DBJ50-T-330-2025-建筑楼地面隔声保温工程应用技术标准
- 人教版2024-2025学年九年级英语下册教学计划(及进度表)
- T-NAHIEM 121-2024 创伤中心建设与设备配置规范
- 《磁感应强度-磁通量》课件
- 人教版九年级下册数学教学计划(及进度表)
- 业务协同与合并抵销报表方案汇报v1.9
- 标准预防及安全注射
- 儿童体适能教学 课件 (20期)
评论
0/150
提交评论