




免费预览已结束,剩余6页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4.1 (1) 存在。因为当之间的相关系数为零时,离差形式的有同理有:(2) 因为 ,且,由于,则 则 (3) 存在。因为当时,同理,有4.3(1)建立中国商品进口额为Y与国内生产总值x1、居民消费价格指数x2得回归模型 估计模型参数,结果为Dependent Variable: LNYMethod: Least SquaresDate: 05/16/12 Time: 19:15Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-3.0601490.337427-9.0690590.0000LNX11.6566740.09220617.967030.0000LNX2-1.0570530.214647-4.9246180.0001R-squared0.992218 Mean dependent var9.155303Adjusted R-squared0.991440 S.D. dependent var1.276500S.E. of regression0.118100 Akaike info criterion-1.313463Sum squared resid0.278952 Schwarz criterion-1.165355Log likelihood18.10482 F-statistic1275.093Durbin-Watson stat0.745639 Prob(F-statistic)0.000000参数估计结果如下:(2))数据中有多重共线性,居民消费价格指数的回归系数的符号不能进行合理的经济意义解释,且其简单相关系数呈现正向变动。(3)Dependent Variable: LNYMethod: Least SquaresDate: 05/16/12 Time: 19:17Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-4.0906670.384252-10.645790.0000LNX11.2185730.03519634.622220.0000R-squared0.982783 Mean dependent var9.155303Adjusted R-squared0.981963 S.D. dependent var1.276500S.E. of regression0.171438 Akaike info criterion-0.606254Sum squared resid0.617208 Schwarz criterion-0.507515Log likelihood8.971921 F-statistic1198.698Durbin-Watson stat0.364369 Prob(F-statistic)0.000000Dependent Variable: LNYMethod: Least SquaresDate: 05/16/12 Time: 19:18Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-5.4424201.253662-4.3412180.0003LNX22.6637900.22804611.680910.0000R-squared0.866619 Mean dependent var9.155303Adjusted R-squared0.860268 S.D. dependent var1.276500S.E. of regression0.477166 Akaike info criterion1.441037Sum squared resid4.781435 Schwarz criterion1.539775Log likelihood-14.57192 F-statistic136.4437Durbin-Watson stat0.152312 Prob(F-statistic)0.000000Dependent Variable: LNX1Method: Least SquaresDate: 05/16/12 Time: 19:19Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-1.4379840.734328-1.9582310.0636LNX22.2459710.13357716.814000.0000R-squared0.930855 Mean dependent var10.87007Adjusted R-squared0.927563 S.D. dependent var1.038480S.E. of regression0.279498 Akaike info criterion0.371300Sum squared resid1.640506 Schwarz criterion0.470039Log likelihood-2.269955 F-statistic282.7107Durbin-Watson stat0.142984 Prob(F-statistic)0.000000单方程拟合效果都很好,回归系数显著,可决系数较高,GDP和CPI对进口分别有显著的单一影响,在这两个变量同时引入模型时影响方向发生了改变;GDP对CPI进行回归分析,回归系数显著,判定系数较高,说明GDP和CPI有很强的线性关系,这正是原模型多重共线性的原因。(4)如果仅仅是作预测,可以不在意这种多重共线性,但如果是进行结构分析,还是应该引起注意。4.6 (1)建立对数线性多元回归模型,引入全部变量建立对数线性多元回归模型如下:变量对数线性多元回归,结果为:Dependent Variable: LNYMethod: Least SquaresDate: 05/16/12 Time: 19:29Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C3.4420512.7061121.2719540.2228LNX111.838202.3097225.1253770.0001LNX2-11.337801.932927-5.8656090.0000LNX3-0.3714500.719447-0.5163000.6132LNX40.2198910.1520831.4458570.1688LNX5-0.1821640.105332-1.7294340.1042LNX60.2255080.3029230.7444390.4681LNX71.2700520.4847282.6201340.0193R-squared0.993930 Mean dependent var11.78641Adjusted R-squared0.991097 S.D. dependent var0.343125S.E. of regression0.032375 Akaike info criterion-3.754629Sum squared resid0.015722 Schwarz criterion-3.359675Log likelihood51.17824 F-statistic350.8771Durbin-Watson stat1.539809 Prob(F-statistic)0.000000从修正的可决系数和F统计量可以看出,全部变量对数线性多元回归整体对样本拟合很好,各变量联合起来对能源消费影响显著。可是其中的lnX4、lnX6对lnY影响不显著,而且lnX2、lnX3、lnX5的参数为负值,在经济意义上不合理。所以这样的回归结果并不理想。 (2)解释变量国民总收入(亿元)X1(代表收入水平)、国内生产总值(亿元)X2(代表经济发展水平)、工业增加值(亿元)X3、建筑业增加值(亿元)X4、交通运输邮电业增加值(亿元)X5(代表产业发展水平及产业结构)、人均生活电力消费 (千瓦小时)X6(代表人民生活水平提高)、能源加工转换效率(%)X7(代表能源转换技术)等很可能线性相关,计算相关系数如下变量LNX1LNX2LNX3LNX4LNX5LNX6LNX7LNX110.9999740.9997330.9969130.9935760.997170.708415LNX20.99997410.9997460.9971770.9938390.9968190.709065LNX30.9997330.99974610.9978870.9917010.9955110.71606LNX40.9969130.9971770.99788710.9895910.9899320.708962LNX50.9935760.9938390.9917010.98959110.9939370.664793LNX60.997170.9968190.9955110.9899320.99393710.685726LNX70.7084150.7090650.716060.7089620.6647930.6857261可以看出lnx1与lnx2、lnx3、lnx4、lnx5、lnx6之间高度相关,许多相关系数高于0.900以上。如果决定用表中全部变量作为解释变量,很可能会出现严重多重共线性问题。(3)因为存在多重共线性,解决方法如下:Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 19:49Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-76917.33103078.4-0.7462020.4671X115.232234.6587863.2695700.0052X2-15.905044.478372-3.5515230.0029X3-2.6333783.649937-0.7214860.4817X426.2643911.126342.3605610.0322X50.0747593.6752040.0203410.9840X6890.4204364.50722.4428060.0274X72155.1851498.8041.4379370.1710R-squared0.989342 Mean dependent var139423.9Adjusted R-squared0.984368 S.D. dependent var51806.33S.E. of regression6477.323 Akaike info criterion20.65821Sum squared resid6.29E+08 Schwarz criterion21.05316Log likelihood-229.5694 F-statistic198.9049Durbin-Watson stat1.278853 Prob(F-statistic)0.000000由图可以看出还是有严重多重共线性。我会采用逐步回归的办法,去检验和解决多重共线性问题:Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 19:59Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C79949.572951.12027.091260.0000X10.7344870.02791626.310490.0000R-squared0.970557 Mean dependent var139423.9Adjusted R-squared0.969155 S.D. dependent var51806.33S.E. of regression9098.624 Akaike info criterion21.15258Sum squared resid1.74E+09 Schwarz criterion21.25131Log likelihood-241.2546 F-statistic692.2419Durbin-Watson stat0.317238 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 19:57Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C79577.183085.51625.790560.0000X20.7365210.02917625.243910.0000R-squared0.968097 Mean dependent var139423.9Adjusted R-squared0.966578 S.D. dependent var51806.33S.E. of regression9471.027 Akaike info criterion21.23280Sum squared resid1.88E+09 Schwarz criterion21.33154Log likelihood-242.1772 F-statistic637.2550Durbin-Watson stat0.303167 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 19:59Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C81615.092696.63430.265550.0000X31.7331670.06113928.347930.0000R-squared0.974533 Mean dependent var139423.9Adjusted R-squared0.973321 S.D. dependent var51806.33S.E. of regression8461.964 Akaike info criterion21.00749Sum squared resid1.50E+09 Schwarz criterion21.10623Log likelihood-239.5862 F-statistic803.6049Durbin-Watson stat0.331246 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 19:59Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C79251.873030.26326.153460.0000X413.214080.51229625.793850.0000R-squared0.969402 Mean dependent var139423.9Adjusted R-squared0.967945 S.D. dependent var51806.33S.E. of regression9275.342 Akaike info criterion21.19105Sum squared resid1.81E+09 Schwarz criterion21.28979Log likelihood-241.6971 F-statistic665.3228Durbin-Watson stat0.314072 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:00Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C82253.985537.91614.852880.0000X510.921770.81045913.476030.0000R-squared0.896349 Mean dependent var139423.9Adjusted R-squared0.891414 S.D. dependent var51806.33S.E. of regression17071.46 Akaike info criterion22.41115Sum squared resid6.12E+09 Schwarz criterion22.50988Log likelihood-255.7282 F-statistic181.6035Durbin-Watson stat0.382638 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:00Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C66876.703935.72416.992220.0000X6679.225330.4119922.334130.0000R-squared0.959601 Mean dependent var139423.9Adjusted R-squared0.957677 S.D. dependent var51806.33S.E. of regression10657.87 Akaike info criterion21.46893Sum squared resid2.39E+09 Schwarz criterion21.56766Log likelihood-244.8926 F-statistic498.8135Durbin-Watson stat0.291768 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:00Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C-1191355.283030.8-4.2092780.0004X719372.594118.6424.7036360.0001R-squared0.513034 Mean dependent var139423.9Adjusted R-squared0.489846 S.D. dependent var51806.33S.E. of regression37002.72 Akaike info criterion23.95831Sum squared resid2.88E+10 Schwarz criterion24.05705Log likelihood-273.5206 F-statistic22.12419Durbin-Watson stat0.665335 Prob(F-statistic)0.000121分别作一元回归得到:变量 X1 X2X3X4X5X6X7参数估计值0.73450.73651.733213.214110.9218679.225319372.59t 统计量26.310525.243928.347925.793913.476022.33414.70360.97060.96810.97450.96940.89630.95960.51300.96920.96660.97330.96790.89140.95770.4898以X1为基础加入其他变量, 结果为:Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:01Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C83843.322740.21230.597380.0000X17.0543211.9695403.5817090.0019X2-6.3458171.977500-3.2090090.0044R-squared0.980564 Mean dependent var139423.9Adjusted R-squared0.978621 S.D. dependent var51806.33S.E. of regression7574.958 Akaike info criterion20.82419Sum squared resid1.15E+09 Schwarz criterion20.97230Log likelihood-236.4782 F-statistic504.5147Durbin-Watson stat0.464981 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:02Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C84231.503279.59625.683500.0000X1-1.0594060.784911-1.3497160.1922X34.2266251.8483692.2866790.0333R-squared0.976659 Mean dependent var139423.9Adjusted R-squared0.974325 S.D. dependent var51806.33S.E. of regression8301.111 Akaike info criterion21.00727Sum squared resid1.38E+09 Schwarz criterion21.15538Log likelihood-238.5837 F-statistic418.4359Durbin-Watson stat0.378850 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:03Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C79700.503065.92625.995570.0000X10.5125660.5191100.9873930.3352X44.0009739.3448150.4281490.6731R-squared0.970824 Mean dependent var139423.9Adjusted R-squared0.967907 S.D. dependent var51806.33S.E. of regression9280.880 Akaike info criterion21.23041Sum squared resid1.72E+09 Schwarz criterion21.37852Log likelihood-241.1497 F-statistic332.7520Durbin-Watson stat0.314608 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:03Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C80505.092595.24131.020280.0000X11.0547430.1208328.7289780.0000X5-5.0602561.869664-2.7065050.0136R-squared0.978450 Mean dependent var139423.9Adjusted R-squared0.976295 S.D. dependent var51806.33S.E. of regression7976.346 Akaike info criterion20.92746Sum squared resid1.27E+09 Schwarz criterion21.07556Log likelihood-237.6657 F-statistic454.0346Durbin-Watson stat0.568319 Prob(F-statistic)0.000000Dependent Variable: YMethod: Least SquaresDate: 05/16/12 Time: 20:03Sample: 1985 2007Included observations: 23VariableCoefficientStd. Errort-StatisticProb. C85053.327168.65411.864610.0000X11.0076470.3501212.8779950.0093X6-254.8718325
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年宁夏银川六中中考数学二模试卷(含部分答案)
- 2025-2026学年陕西省西安市雁塔区高新一中九年级(上)收心考数学试卷(含部分答案)
- 咖啡理论知识题库及答案
- 国企考试财会题目及答案
- 2025年有毒有害固体废弃物处理设备项目建议书
- 抗击八国联军优教课件
- 2025年移动通信终端设备及零部件项目发展计划
- 扶贫知识两熟悉专题培训课件
- 2025年许职招聘考试真题及答案
- 2025年中铝炭素考试试卷及答案
- 2025秋季开学第一课完整版课件
- 2025重庆对外建设集团招聘41人笔试参考题库附答案解析
- 2025年版小学数学新课程标准测试题含答案【附新课标解读】
- 中医健康管师试题及答案
- 2025年物流师(初级)物流企业物流信息化信息安全认证员培训鉴定试卷
- 2.1人的社会化 教案 2025-2026学年统编版道德与法治八年级上册
- 2025入团考试题库(完整版)附答案详解
- 新粒子生成与生长机制-洞察及研究
- 医疗机构环境表面清洁与消毒管理标准WST512-2025解读
- GB/T 34399-2025医药产品冷链物流温控设施设备验证性能确认技术规范
- 2025年北京市中考物理真题(含答案)
评论
0/150
提交评论