免费预览已结束,剩余17页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座34)直线与圆锥曲线的位置关系一课标要求:1通过圆锥曲线与方程的学习,进一步体会数形结合的思想;2掌握直线与圆锥曲线的位置关系判定及其相关问题。二命题走向近几年来直线与圆锥曲线的位置关系在高考中占据高考解答题压轴题的位置,且选择、填空也有涉及,有关直线与圆锥曲线的位置关系的题目可能会涉及线段中点、弦长等。分析这类问题,往往利用数形结合的思想和“设而不求”的方法,对称的方法及韦达定理等。预测07年高考:1会出现1道关于直线与圆锥曲线的位置关系的解答题;2与直线、圆锥曲线相结合的综合型考题,等轴双曲线基本不出题,坐标轴平移或平移化简方程一般不出解答题,大多是以选择题形式出现。三要点精讲1点M(x0,y0)与圆锥曲线C:f(x,y)=0的位置关系2直线与圆锥曲线的位置关系直线与圆锥曲线的位置关系,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点。直线与圆锥曲线的位置关系的研究方法可通过代数方法即解方程组的办法来研究。因为方程组解的个数与交点的个数是一样的。直线与圆锥曲线的位置关系可分为:相交、相切、相离对于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切这三种位置关系的判定条件可引导学生归纳为:注意:直线与抛物线、双曲线有一个公共点是直线与抛物线、双曲线相切的必要条件,但不是充分条件3直线与圆锥曲线相交的弦长公式设直线l:y=kx+n,圆锥曲线:F(x,y)=0,它们的交点为P1 (x1,y1),P2 (x2,y2),且由,消去yax2+bx+c=0(a0),=b2 4ac。则弦长公式为:d=。焦点弦长:(点是圆锥曲线上的任意一点,是焦点,是到相应于焦点的准线的距离,是离心率)。四典例解析题型1:直线与椭圆的位置关系例1已知椭圆:,过左焦点F作倾斜角为的直线交椭圆于A、B两点,求弦AB的长。解析:a=3,b=1,c=2,则F(-2,0)。由题意知:与联立消去y得:。设A(、B(,则是上面方程的二实根,由违达定理,又因为A、B、F都是直线上的点,所以|AB|=点评:也可让学生利用“焦半径”公式计算。例2中心在原点,一个焦点为F1(0,)的椭圆截直线所得弦的中点横坐标为,求椭圆的方程。解析:设椭圆的标准方程为,由F1(0,)得把直线方程代入椭圆方程整理得:。设弦的两个端点为,则由根与系数的关系得:,又AB的中点横坐标为,与方程联立可解出故所求椭圆的方程为:。点评:根据题意,可设椭圆的标准方程,与直线方程联立解方程组,利用韦达定理及中点坐标公式,求出中点的横坐标,再由F1(0,)知,c=,最后解关于a、b的方程组即可。例3(06辽宁卷)直线与曲线 的公共点的个数为( )(A)1 (B)2 (C)3 (D)4解析:将代入得:。,显然该关于的方程有两正解,即x有四解,所以交点有4个,故选择答案D。点评:本题考查了方程与曲线的关系以及绝对值的变换技巧,同时对二次方程的实根分布也进行了简单的考查。例4(2000上海,17)已知椭圆C的焦点分别为F1(,0)和F2(2,0),长轴长为6,设直线y=x+2交椭圆C于A、B两点,求线段AB的中点坐标。解析:设椭圆C的方程为,由题意a=3,c=2,于是b=1.椭圆C的方程为y21由得10x236x270,因为该二次方程的判别式0,所以直线与椭圆有两个不同的交点,设A(x1,y1),B(x2,y2),则x1x2,故线段AB的中点坐标为()点评:本题主要考查椭圆的定义标准方程,直线与椭圆的位置关系及线段中点坐标公式。题型2:直线与双曲线的位置关系例5(1)过点与双曲线有且只有一个公共点的直线有几条,分别求出它们的方程。(2)直线与双曲线相交于A、B两点,当为何值时,A、B在双曲线的同一支上?当为何值时,A、B分别在双曲线的两支上?解析:(1)解:若直线的斜率不存在时,则,此时仅有一个交点,满足条件;若直线的斜率存在时,设直线的方程为则, ,当时,方程无解,不满足条件;当时,方程有一解,满足条件;当时,令,化简得:无解,所以不满足条件;所以满足条件的直线有两条和。(2)把代入整理得:(1)当时,。由0得且时,方程组有两解,直线与双曲线有两个交点。若A、B在双曲线的同一支,须0 ,所以或。故当或时,A、B两点在同一支上;当时,A、B两点在双曲线的两支上。点评:与双曲线只有一个公共点的直线有两种。一种是与渐近线平行的两条与双曲线交于一点的直线。另一种是与双曲线相切的直线也有两条。例5(1)求直线被双曲线截得的弦长;(2)求过定点的直线被双曲线截得的弦中点轨迹方程。解析:由得得(*)设方程(*)的解为,则有 得,(2)方法一:若该直线的斜率不存在时与双曲线无交点,则设直线的方程为,它被双曲线截得的弦为对应的中点为, 由得(*)设方程(*)的解为,则,且,得或。方法二:设弦的两个端点坐标为,弦中点为,则得:, 即, 即(图象的一部分)点评:(1)弦长公式;(2)有关中点弦问题的两种处理方法。例7过双曲线的一焦点的直线垂直于一渐近线,且与双曲线的两支相交,求该双曲线离心率的范围。解析:设双曲线的方程为,渐近线,则过的直线方程为,则,代入得,即得,即得到。点评:直线与圆锥曲线的位置关系经常和圆锥曲线的几何要素建立起对应关系,取值范围往往与判别式的取值建立联系。题型3:直线与抛物线的位置关系例8已知抛物线方程为,直线过抛物线的焦点F且被抛物线截得的弦长为3,求p的值。解析:设与抛物线交于由距离公式|AB|=由从而由于p0,解得点评:方程组有两组不同实数解或一组实数解则相交;有两组相同实数解则相切;无实数解则相离。例92003上海春,4)直线y=x1被抛物线y2=4x截得线段的中点坐标是_.答案:(3,2)解法一:设直线y=x1与抛物线y2=4x交于A(x1,y1),B(x2,y2),其中点为P(x0,y0)。由题意得,(x1)2=4x,x26x+1=0。x0=3.y0=x01=2.P(3,2)。解法二:y22=4x2,y12=4x1,y22y12=4x24x1,=4.y1+y2=4,即y0=2,x0=y0+1=3。故中点为P(3,2)。点评:本题考查曲线的交点与方程的根的关系.同时应注意解法一中的纵坐标与解法二中的横坐标的求法。例10(1997上海)抛物线方程为y2=p(x+1)(p0),直线x+y=m与x轴的交点在抛物线的准线的右边.(1)求证:直线与抛物线总有两个交点;(2)设直线与抛物线的交点为Q、R,OQOR,求p关于m的函数f(m)的表达式;(3)(文)在(2)的条件下,若抛物线焦点F到直线x+y=m的距离为,求此直线的方程;(理)在(2)的条件下,若m变化,使得原点O到直线QR的距离不大于,求p的值的范围.解:(1)抛物线y2=p(x+1)的准线方程是x=1,直线x+y=m与x轴的交点为(m,0),由题设交点在准线右边,得m1,即4m+p+40.由得x2(2m+p)x+(m2p)=0.而判别式=(2m+p)24(m2p)=p(4m+p+4).又p0及4m+p+40,可知0.因此,直线与抛物线总有两个交点;(2)设Q、R两点的坐标分别为(x1,y1)、(x2,y2),由(1)知,x1、x2是方程x2(2m+p)x+m2p=0的两根,x1+x2=2m+p,x1x2=m2p.由OQOR,得kOQkOR=1,即有x1x2+y1y2=0.又Q、R为直线x+y=m上的点,因而y1=x1+m,y2=x2+m.于是x1x2+y1y2=2x1x2m(x1+x2)+m2=2(m2p)m(2m+p)+m2=0,p=f(m)=,由得m2,m0;(3)(文)由于抛物线y2=p(x+1)的焦点F坐标为(1+,0),于是有,即|p4m4|=4.又p=|=4.解得m1=0,m2=,m3=4,m4=.但m0且m2,因而舍去m1、m2、m3,故所求直线方程为3x+3y+4=0.(理)解法一:由于原点O到直线x+y=m的距离不大于,于是,|m|1.由(2),知m2且m0,故m1,0)(0,1.由(2),知f(m)=(m+2)+4,当m1,0)时,任取m1、m2,0m1m21,则f(m1)f(m2)=(m1m2)+()=(m1m2)1.由0m1m21,知0(m1+2)(m2+2)4,10.又由m1m20知f(m1)f(m2)因而f(m)为减函数.可见,当m1,0)时,p(0,1.同样可证,当m(0,1时,f(m)为增函数,从而p(0,.解法二:由解法一知,m1,0)(0,1.由(2)知p=f(m)=.设t=,g(t)=t+2t2,则t(,11,+),又g(t)=2t2+t=2(t+)2.当t(,1时,g(t)为减函数,g(t)1,+).当t1,+)时,g(t)为增函数,g(t)3,+).因此,当m1,0时,t(,1,p=(0,1;当m(0,1时,t1,+),p(0,.点评:本题考查抛物线的性质与方程,抛物线与直线的位置关系,点到直线的距离,函数与不等式的知识,以及解决综合问题的能力。例11(06山东卷)已知抛物线y2=4x,过点P(4,0)的直线与抛物线相交于A(x1,y1),B(x2,y2)两点,则y12+y22的最小值是 。解析:显然0,又4()8,当且仅当时取等号,所以所求的值为32。点评:该题考查直线与抛物线位置关系下的部分求值问题,结合基本不等式求得最终结果。五思维总结1加强直线与圆锥曲线的位置关系问题的复习由于直线与圆锥曲线的位置关系一直为高考的热点。这类问题常涉及到圆锥曲线的性质和直线的基本知识点、线段的中点、弦长、垂直问题,因此分析问题时利用数形结合思想来设。而不求法与弦长公式及韦达定理联系去解决。这样就加强了对数学各种能力的考查;2关于直线与圆锥曲线相交弦则结合韦达定理采用设而不求法。利用引入一个参数表示动点的坐标x、y,间接把它们联系起来,减少变量、未知量采用参数法。有些题目还常用它们与平面几何的关系,利用平面几何知识会化难为易,化繁为简,收到意想不到的解题效果;3直线与圆锥曲线有无公共点或有几个公共点的问题,实际上是研究它们的方程组成的方程是否有实数解成实数解的个数问题,此时要注意用好分类讨论和数形结合的思想方法;4当直线与圆锥曲线相交时 涉及弦长问题,常用“韦达定理法”设而不求计算弦长(即应用弦长公式);涉及弦长的中点问题,常用“点差法”设而不求,将弦所在直线的斜率、弦的中点坐标联系起来,相互转化。同时还应充分挖掘题目的隐含条件,寻找量与量间的关系灵活转化,往往就能事半功倍;普通高中课程标准实验教科书数学 人教版 高三新数学第一轮复习教案(讲座29)等比数列一课标要求:1通过实例,理解等比数列的概念;2探索并掌握等差数列的通项公式与前n项和的公式;3能在具体的问题情境中,发现数列的等比关系,并能用有关知识解决相应的问题。体会等比数列与指数函数的关系。二命题走向等比数列与等差数列同样在高考中占有重要的地位,是高考出题的重点。客观性的试题考察等比数列的概念、性质、通项公式、求和公式等基础知识和基本性质的灵活应用,对基本的运算要求比较高,解答题大多以数列知识为工具。预测07年高考对本讲的考察为:(1)题型以等比数列的公式、性质的灵活应用为主的12道客观题目;(2)关于等比数列的实际应用问题或知识交汇题的解答题也是重点;(3)解决问题时注意数学思想的应用,象通过逆推思想、函数与方程、归纳猜想、等价转化、分类讨论等,它将能灵活考察考生运用数学知识分析问题和解决问题的能力。三要点精讲1等比数列定义一般地,如果一个数列从第二项起,每一项与它的前一项的比等于同一个常数,那么这个数列就叫做等比数列,这个常数叫做等比数列的公比;公比通常用字母表示,即:数列对于数列(1)(2)(3)都是等比数列,它们的公比依次是2,5,。(注意:“从第二项起”、“常数”、等比数列的公比和项都不为零)2等比数列通项公式为:。说明:(1)由等比数列的通项公式可以知道:当公比时该数列既是等比数列也是等差数列;(2)等比数列的通项公式知:若为等比数列,则。3等比中项如果在中间插入一个数,使成等比数列,那么叫做的等比中项(两个符号相同的非零实数,都有两个等比中项)。4等比数列前n项和公式一般地,设等比数列的前n项和是,当时, 或;当q=1时,(错位相减法)。说明:(1)和各已知三个可求第四个;(2)注意求和公式中是,通项公式中是不要混淆;(3)应用求和公式时,必要时应讨论的情况。四典例解析题型1:等比数列的概念例1“公差为0的等差数列是等比数列”;“公比为的等比数列一定是递减数列”;“a,b,c三数成等比数列的充要条件是b2=ac”;“a,b,c三数成等差数列的充要条件是2b=a+c”,以上四个命题中,正确的有( )A1个 B2个 C3个 D4个解析:四个命题中只有最后一个是真命题。命题1中未考虑各项都为0的等差数列不是等比数列;命题2中可知an+1=an,an+1an未必成立,当首项a10时,anan,即an+1an,此时该数列为递增数列;命题3中,若a=b=0,cR,此时有,但数列a,b,c不是等比数列,所以应是必要而不充分条件,若将条件改为b=,则成为不必要也不充分条件。点评:该题通过一些选择题的形式考察了有关等比数列的一些重要结论,为此我们要注意一些有关等差数列、等比数列的重要结论。例2命题1:若数列an的前n项和Sn=an+b(a1),则数列an是等比数列;命题2:若数列an的前n项和Sn=an2+bn+c(a0),则数列an是等差数列;命题3:若数列an的前n项和Sn=nan,则数列an既是等差数列,又是等比数列;上述三个命题中,真命题有( )A0个 B1个 C2个 D3个解析: 由命题1得,a1=a+b,当n2时,an=SnSn1=(a1)an1。若an是等比数列,则=a,即=a,所以只有当b=1且a0时,此数列才是等比数列。由命题2得,a1=a+b+c,当n2时,an=SnSn1=2na+ba,若an是等差数列,则a2a1=2a,即2ac=2a,所以只有当c=0时,数列an才是等差数列。由命题3得,a1=a1,当n2时,an=SnSn1=a1,显然an是一个常数列,即公差为0的等差数列,因此只有当a10;即a1时数列an才又是等比数列。点评:等比数列中通项与求和公式间有很大的联系,上述三个命题均涉及到Sn与an的关系,它们是an=,正确判断数列an是等差数列或等比数列,都必须用上述关系式,尤其注意首项与其他各项的关系。上述三个命题都不是真命题,选择A。题型2:等比数列的判定例3(2000全国理,20)()已知数列cn,其中cn2n3n,且数列cn1pcn为等比数列,求常数p;()设an、bn是公比不相等的两个等比数列,cn=an+bn,证明数列cn不是等比数列。解析:()解:因为cn1pcn是等比数列,故有:(cn1pcn)2(cn2pcn1)(cnpcn1),将cn2n3n代入上式,得:2n13n1p(2n3n)22n23n2p(2n13n1)2n3np(2n13n1),即(2p)2n(3p)3n2(2p)2n1(3p)3n1(2p)2n1(3p)3n1,整理得(2p)(3p)2n3n0,解得p=2或p=3。()证明:设an、bn的公比分别为p、q,pq,cn=an+bn。为证cn不是等比数列只需证c22c1c3。事实上,c22(a1pb1q)2a12p2b12q22a1b1pq,c1c3(a1b1)(a1p2b1q2)a12p2b12q2a1b1(p2q2),由于pq,p2q22pq,又a1、b1不为零,因此c22c1c3,故cn不是等比数列。点评:本题主要考查等比数列的概念和基本性质,推理和运算能力。例4(2003京春,21)如图31,在边长为l的等边ABC中,圆O1为ABC的图31内切圆,圆O2与圆O1外切,且与AB,BC相切,圆On+1与圆On外切,且与AB、BC相切,如此无限继续下去.记圆On的面积为an(nN*),证明an是等比数列;证明:记rn为圆On的半径,则r1=tan30=。=sin30=,所以rn=rn1(n2),于是a1=r12=,故an成等比数列。点评:该题考察实际问题的判定,需要对实际问题情景进行分析,最终对应数值关系建立模型加以解析。题型3:等比数列的通项公式及应用例5一个等比数列有三项,如果把第二项加上4,那么所得的三项就成为等差数列,如果再把这个等差数列的第三项加上32,那么所得的三项又成为等比数列,求原来的等比数列。解析:设所求的等比数列为a,aq,aq2;则2(aq+4)=a+aq2,且(aq+4)2=a(aq2+32);解得a=2,q=3或a=,q=5;故所求的等比数列为2,6,18或,。点评:第一种解法利用等比数列的基本量,先求公比,后求其它量,这是解等差数列、等比数列的常用方法,其优点是思路简单、实用,缺点是有时计算较繁。例6(2006年陕西卷)已知正项数列,其前项和满足且成等比数列,求数列的通项解析:10Sn=an2+5an+6, 10a1=a12+5a1+6,解之得a1=2或a1=3。又10Sn1=an12+5an1+6(n2), 由得 10an=(an2an12)+6(anan1),即(an+an1)(anan15)=0an+an10 , anan1=5 (n2)。当a1=3时,a3=13,a15=73,a1, a3,a15不成等比数列a13;当a1=2时,,a3=12, a15=72,有 a32=a1a15 , a1=2, an=5n3。点评:该题涉及等比数列的求和公式与等比数列通项之间的关系,最终求得结果。题型4:等比数列的求和公式及应用例7(1)(2006年辽宁卷)在等比数列中,前项和为,若数列也是等比数列,则等于( )A B C D(2)(2006年北京卷)设,则等于( )AB C D(3)(1996全国文,21)设等比数列an的前n项和为Sn,若S3S62S9,求数列的公比q;解析:(1)因数列为等比,则,因数列也是等比数列,则即,所以,故选择答案C。(2)D;(3)解:若q=1,则有S3=3a1,S6=6a1,S9=9a1。因a10,得S3+S62S9,显然q=1与题设矛盾,故q1。由S3+S6=2S9,得,整理得q3(2q6q31)=0,由q0,得2q6q31=0,从而(2q31)(q31)=0,因q31,故q3=,所以q=。点评:对于等比数列求和问题要先分清数列的通项公式,对应好首项和公比求出最终结果即可。例8(1)(2002江苏,18)设an为等差数列,bn为等比数列,a1b11,a2a4b3,b2b4a3分别求出an及bn的前10项的和S10及T10;(2)(2001全国春季北京、安徽,20)在1与2之间插入n个正数a1,a2,a3,an,使这n2个数成等比数列;又在1与2之间插入n个正数b1,b2,b3,bn,使这n2个数成等差数列.记Ana1a2a3an,Bnb1b2b3bn.()求数列An和Bn的通项;()当n7时,比较An与Bn的大小,并证明你的结论。(3)(2002天津理,22)已知an是由非负整数组成的数列,满足a10,a23,an1an(an12)(an22),n3,4,5,()求a3;()证明anan22,n3,4,5,;()求an的通项公式及其前n项和Sn。解析:(1)an为等差数列,bn为等比数列,a2a42a3,b2b4b32已知a2a4b3,b2b4a3,b32a3,a3b32得 b32b32b30 b3,a3由a11,a3知an的公差为d,S1010a1由b11,b3知bn的公比为q或q当q时,当q时,。(2)()设公比为q,公差为d,等比数列1,a1,a2,an,2,等差数列1,b1,b2,bn,2。则A1a11q A21q1q2 A31q1q21q3又an21qn12得qn12,Anqq2qnq(n1,2,3)又bn21(n1)d2 (n1)d1B1b11d B2b2b11d12d Bn1d1ndn()AnBn,当n7时证明:当n7时,2358An Bn7,AnBn设当nk时,AnBn,则当nk1时,又Ak+1且AkBk Ak1kAk1Bk1又k8,9,10 Ak1Bk10,综上所述,AnBn成立.(3)()解:由题设得a3a410,且a3、a4均为非负整数,所以a3的可能的值为1,2,5,10若a31,则a410,a5,与题设矛盾若a35,则a42,a5,与题设矛盾若a310,则a41,a560,a6,与题设矛盾.所以a32.()用数学归纳法证明:当n3,a3a12,等式成立;假设当nk(k3)时等式成立,即akak22,由题设ak1ak(ak12)(ak22),因为akak220,所以ak1ak12,也就是说,当nk1时,等式ak1ak12成立;根据和,对于所有n3,有an+1=an1+2。()解:由a2k1a2(k1)12,a10,及a2ka2(k1)2,a23得a2k12(k1),a2k2k1,k1,2,3,即ann(1)n,n1,2,3,。所以Sn点评:本小题主要考查数列与等差数列前n项和等基础知识,以及准确表述,分析和解决问题的能力。题型5:等比数列的性质例9(1)(2005江苏3)在各项都为正数的等比数列an中,首项a13,前三项和为21,则a3a4a5( )(A)33 (B)72 (C)84 (D)189(2)(2000上海,12)在等差数列an中,若a100,则有等式a1+a2+an=a1+a2+a19n(n19,nN成立.类比上述性质,相应地:在等比数列bn中,若b91,则有等式 成立。解析:(1)答案:C;解:设等比数列an的公比为q(q0),由题意得:a1+a2+a3=21,即3+3q+3q2=21,q2+q-6=0,求得q=2(q=3舍去),所以a3+a4+a5=q2(a1+a2+a3)=4故选C。(2)答案:b1b2bnb1b2b17n(n17,nN*);解:在等差数列an中,由a100,得a1a19a2a18ana20nan1a19n2a100,所以a1a2ana190,即a1a2ana19a18an1,又a1a19,a2a18,a19nan1a1a2ana19a18an1a1a2a19n,若a90,同理可得a1a2ana1a2a17n,相应地等比数列bn中,则可得:b1b2bnb1b2b17n(n17,nN*)。点评:本题考查了等比数列的相关概念及其有关计算能力。例10(1)设首项为正数的等比数列,它的前n项和为80,前2n项和为6560,且前n项中数值最大的项为54,求此数列的首项和公比q。(2)在和之间插入n个正数,使这个数依次成等比数列,求所插入的n个数之积。(3)设等比数列an的各项均为正数,项数是偶数,它的所有项的和等于偶数项和的4倍,且第二项与第四项的积是第3项与第4项和的9倍,问数列lgan的前多少项和最大?(lg2=0 3,lg3=0.4)解析:(1)设等比数列an的前n项和为Sn,依题意设:a10,Sn=80 ,S2n=6560。 S2n2Sn ,q1;从而 =80,且=6560。两式相除得1+qn=82 ,即qn=81。a1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 侧链氨基酸行业深度研究报告
- 中国以胶鞋类项目投资可行性研究报告
- 中国皮机配件项目投资可行性研究报告
- 有色金属浮选行业深度研究报告
- 2023年吉林辅警协警招聘考试真题及参考答案详解
- 2023年唐山辅警协警招聘考试备考题库及完整答案详解一套
- 2023年天水辅警协警招聘考试真题及一套参考答案详解
- 2025年及未来5年中国蒸谷米行业市场运营现状及投资规划研究建议报告
- 2023年忠县辅警招聘考试题库含答案详解
- 2023年商洛辅警协警招聘考试备考题库及完整答案详解
- 2024年山东省港口集团有限公司招聘真题
- 化工安全警示教育课件
- 肠外营养并发症及护理
- 2025年海飞丝产品的市场定位和消费者行为分析报告
- 小学科学3-6年级实验目一览表(苏教版)
- ICU轮转护士带教计划
- 2025年度新能源项目光伏桩基施工合同
- 相机租赁合同模板
- 全国公开课一等奖统编版七年级语文上册新教材(统编2024版)《往事依依》课件
- 品牌策划及创意策划流程
- DBJ51-T 040-2021 四川省工程建设项目招标代理操作规程
评论
0/150
提交评论