




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
论向量在高中数学教学中的作用 作为新课程改革,高中数学教材的两个显著变化就是“向量和导数”的引入。其目的也很明确:为研究函数、空间图形,提供新的研究手段,即充分体现它们的工具性。但这种“工具性”,只有在深刻理解的基础上才能用好,而要想用活,这又需要我们在实践中不断“开发”新的认识,丰富知识网络,形成较完善的“认知模块”、“知识体系”。,极大地丰富了关于空间向量的“数量积”这一运算的“认知模块”的内涵。(一)性质的产生与内含已知向量和轴l,是l上与l同方向的单位向量,作点A在l上的射影,作点B在l上的射影 则叫向量在轴l上或在方向上的正射影,简称射影。 可以证明得,(证明略,图如下所示。)此性质的内含理解有四点:结果是一个数量(本身含正负号);其正负号由向量所成角的范围决定;加上绝对值便是一条线段长度(这里刚好组成一个直角三角形的两条直角边);可以推广为求一条线段在另一条直线上的正射影(此线段所在直线与已知直线的位置关系可以异面直线)。(二)性质的“知识链”对教材引进空间向量的“坐标法”来解决空间中“三大角”问题,我们的学生可以说是欣喜若狂啊,因为学生觉得这种方法好!可操作性强!(只要能建系,有坐标就行!)但在实际应用中,学生觉得这些结论不易理解,加上这些结论只能逐步形成和完善,靠死记硬背吧,今天记了明天又忘了!等到用时,仍是“生硬、呆板”,甚至张冠李戴。如何突破这一问题?我认为其根本原因是:在学生的认知结构里,这一性质未能如愿地形成“知识链”。那么,这一性质是怎样与相关问题产生“对接或联系”的呢?(1)它是空间三大角(即线线角、线面角、二面角的平面角)用向量法求解的“对接点”。11线线角的求法的新认识:我们把这两条线赋予恰当的两个向量,问题就化归为两个向量的夹角(两个向量所成的角的范围为),即,我们能否加以重新认识这个公式呢?如图,AOOBOB1OabqAOOBOB1OabqAOOBO(B1)Oabq,此时OB1可以看作是与方向上的单位向量的数量积,这就是由数量积这条性质滋生而成的;故此结论重新可以理解为:(这里刚好满足三角函数中余弦的定义:邻边比斜边)。12线面角的求法的新认识:naAPOq(其中为平面的一个法向量),此结论重新可以理解为:,此时OP又可以看作是在上的投影,即与方向上的单位向量的数量积,故(这里刚好满足三角函数中正弦的定义:对边比斜边)。13二面角的平面角的求法的新认识:=(其中是两二面角所在平面的各一个法向量)此结论重新可以理解为:(这里刚好满足三角函数中余弦的定义:邻边比斜边)。三大角的统一理解:、其从上述梳理完全可以看出其本质特征:这里的“空间角”的求法,完全与直角三角形中的三角函数的“正弦或余弦的定义”发生了对接对边或邻边就是斜边的向量在此边向量上的投影,即斜边向量与对边或邻边方向上的单位向量的数量积,而理解与掌握这里的“空间角”的直角三角形的构图,学生完全可以达到“系统化”和“自主化”,因为直角三角形中的三角函数定义,他们太熟悉了!即将知识的“生长点”建立在学生认知水平的“最近发展区”,那学习就会水到渠成! (2)它又是空间三大距离(即点线距、点面距、异面直线间距离)用向量法求解的“联系点”。空间中有七大距离(除球面上两点间的距离外)基本上可转化为点点距、点线距、点面距,而点线距和点面距又是重中之重!另外两异面直线间的距离,高考考纲中明确要求:对于异面直线的距离,只要求会计算已给出公垂线或在坐标表示下的距离。因此对异面直线间的距离的考查有着特殊的身份。教材按排中引进了向量法来解决距离问题,也给问题的解决带来新的活力!不用作出(或找出)所求的距离了。21点面距求法的新认识:naAPOq(其中为平面的一个法向量),此结论重新可以理解为: ,即在上的投影,即与方向上的单位向量的数量积。22点线距求法的新认识:1)新认识之一:PlOA如图,若存在有一条与l相交的直线时,就可以先求出由这两条相交直线确定的平面的一个法向量,则点P到l的距离。2)新认识之二:若不存在有一条与l相交的直线时,我们可以先取l上的一个向量,再利用来解,即:,而数量可以理解为在l上的向量的投影,也即为:。23异面直线间距离求法的新认识: 从这几年的高考考纲说明观察,我们不难发现,对异面直线间距离的考查本意不能太难,但若出现难一点的考题,命题者又能自圆其说的新情况。实际上,这种自圆其说法归根到底在于高考考纲中的说法:只要求会计算已给出公垂线或在坐标表示下的距离。那也就是说,在不要作出公垂线(也许学生作不出!)的情况下,也可以求出它们的距离的!那就是用向量法!l1Al2BCD如图所示:若直线l1与直线l2是两异面直线,求两异面直线的距离。 略解:在两直线上分别任取两点A、C、B、D,构造三个向量,记与两直线的公垂线共线的向量为,则由,得,则它们的距离就可以理解为:在上的投影的绝对值,即: 。 三大距离的统一理解:(点面距)、 (异面距)、(点线距之一)、且(点线距之二)、其本质特征是:一个向量在其所求的距离所在直线的一个向量上的投影,也即数量积此性质的直接应用。由上述的剖析过程不难再看出:空间中的三大角与三大基本距离的计算,都隐藏于这个“特定”的数量积的性质之中,体现在这个公式结构的“统一美”之中,把问题的本质揭示得“淋漓尽致”,而又不失自然!这给“立体几何” 中向量的工具性的体现,增色了几分美感与统一感!(三)性质的应用例1、(2005年山东省(理科)高考第20题)如图,已知长方体直线与平面所成的角为,垂直于,为的中点.(I)求异面直线与所成的角;(II)求平面与平面所成的二面角;(III)求点到平面的距离.解:在长方体中,以所在的直线为轴,以所在的直线为轴,所在的直线为轴建立如图示空间直角坐标系;由已知可得,又平面,从而与平面所成的角为,又,从而易得(I) 因为所以,易知异面直线所成的角为(II) 易知平面的一个法向量,设是平面的一个法向量,由即所以即平面与平面所成的二面角的大小(锐角)为(III)点到平面的距离,即在平面的法向量上的投影的绝对值,所以距离=所以点到平面的距离为例2、(2005年重庆(理科)高考第20题)如图,在三棱柱ABCA1B1C1中,AB侧面BB1C1C,E为棱CC1上异于C、C1的一点,EAEB1,已知AB=,BB1=2,BC=1,BCC1=,求:()异面直线AB与EB1的距离;()二面角AEB1A1的平面角的正切值. 解:(I)以B为原点,、分别为y、z轴建立空间直角坐标系.由于BC=1,BB1=2,AB=,BCC1=,在三棱柱ABCA1B1C1中有B(0,0,0),A(0,0,),B1(0,2,0),A1(0,2,),设;,则得,(令y=1),故=1(II)由已知有故二面角AEB1A1的两个半平面的法向量为。通过上述几个高考题的分析,我们不难看出:立体几何中的几何法的“难在找(或作)所求的角度或距离”,通过这个数量积的性质的转化(方法的转化与知识之间
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 年度安全培训合格材料课件
- 年安全培训计划制定课件
- 工业安全管理培训课件
- Fluoroacetyl-CoA-Fluoroacetyl-coenzyme-A-生命科学试剂-MCE
- Fenazaquin-d13-XDE-436-d-sub-13-sub-生命科学试剂-MCE
- Etimizol-Standard-生命科学试剂-MCE
- 农发行宜春市靖安县2025秋招小语种岗笔试题及答案
- 中国石油庆阳石化分公司高校毕业生招聘笔试真题2024
- 河北省考真题2025
- 2025年乌海市国企考试真题
- 科室的运营管理经验分享
- 2025-2030中国篮球运动鞋行业市场发展趋势与前景展望战略研究报告
- 中国成人患者围手术期液体治疗临床实践指南(2025版)解读 2
- 小反刍兽疫防治技术规范
- 高压基础知识培训课件
- 2025年保健品总代理合同样本
- 2025年摩托车用锁行业深度研究分析报告
- 《家族企业人力资源管理探究-以某集团为例》15000字【论文】
- 幼儿园创造性游戏培训
- 2025至2030年中国去屑洗发露数据监测研究报告
- 输变电工程监督检查标准化清单-质监站检查
评论
0/150
提交评论