




免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
。1 “三角函数是周期函数,ytanx,x是三角函数,所以ytanx,x是周期函数”在以上演绎推理中,下列说法正确的是()A推理完全正确B大前提不正确C小前提不正确 D推理形式不正确答案D解析大前提和小前提中的三角函数不是同一概念,犯了偷换概念的错误,即推理形式不正确2设ABC的三边长分别为a、b、c,ABC的面积为S,内切圆半径为r,则r;类比这个结论可知:四面体PABC的四个面的面积分别为S1、S2、S3、S4,内切球的半径为r,四面体PABC的体积为V,则r()A BC D答案C解析将ABC的三条边长a、b、c类比到四面体PABC的四个面面积S1、S2、S3、S4,将三角形面积公式中系数,类比到三棱锥体积公式中系数,从而可知选C.证明如下:以四面体各面为底,内切球心O为顶点的各三棱锥体积的和为V,VS1rS2rS3rS4r,r.3已知整数的数列如下:(1,1),(1,2),(2,1),(1,3),(2,2),(3,1),(1,4),(2,3),(3,2),(4,1),(1,5),(2,4),则第60个数对是()A(3,8) B(4,7)C(4,8) D(5,7)答案D解析观察可知横坐标与纵坐标之和为2的数对有1个,和为3的数对有2个,和为4的数对有3个,和为5的数对有4个,依此类推和为n1的数对有n个,和相同的数对的排序是按照横坐标依次增大的顺序来排的,由60n(n1)120,nN,n10时,55个数对,还差5个数对,且这5个数对的横、纵坐标之和为12,它们依次是(1,11),(2,10),(3,9),(4,8),(5,7),所以第60个数对是(5,7)4平面几何中,有边长为a的正三角形内任一点到三边距离之和为定值a,类比上述命题,棱长为a的正四面体内任一点到四个面的距离之和为()Aa Ba Ca Da答案B解析将正三角形一边上的高a类比到正四面体一个面上的高a,由正三角形“分割成以三条边为底的三个三角形面积的和等于正三角形的面积”,方法类比为“将四面体分割成以各面为底的三棱锥体积之和等于四面体的体积”证明5推理:“矩形是平行四边形,三角形不是平行四边形,所以三角形不是矩形”中的小前提是()A BC D答案B解析由的关系知,小前提应为“三角形不是平行四边形”故应选B.6、以下推理过程省略的大前提为:_.a2b22ab,2(a2b2)a2b22ab.答案若ab,则acbc解析由小前提和结论可知,是在小前提的两边同时加上了a2b2,故大前提为:若ab,则acbc.7以下推理中,错误的序号为_abac,bc;ab,bc,ac;75不能被2整除,75是奇数;ab,b平面,a.答案解析当a0时,abac,但bc未必成立8“l,AB,ABl,AB”,在上述推理过程中,省略的命题为_答案如果两个平面相交,那么在一个平面内垂直于交线的直线垂直于另一个平面9下面给出判断函数f(x)的奇偶性的解题过程:解:由于xR,且1.f(x)f(x),故函数f(x)为奇函数试用三段论加以分析解析判断奇偶性的大前提“若xR,且f(x)f(x),则函数f(x)是奇函数;若xR,且f(x)f(x),则函数f(x)是偶函数”在解题过程中往往不用写出来,上述证明过程就省略了大前提解答过程就是验证小前提成立,即所给的具体函数f(x)满足f(x)f(x)10先解答下题,然后分析说明你的解题过程符合演绎推理规则设m为实数,求证:方程x22mxm210没有实数根解析已知方程x22mxm210的判别式(2m)24(m21)40,所以方程x22mxm210没有实数根说明:此推理过程用三段论表述为:大前提:如果一元二次方程的判别式0,那么这个方程没有实数根;小前提:一元二次方程x22mxm210的判别式0;结论:一元二次方程x22mxm210没有实数根解题过程就是验证小前提成立后,得出结论11在等差数列an中,若a100,则有等式a1a2ana1a2a19n(n19,nN*)成立,类比上述性质,相应地:在等比数列bn中,若b91,则有等式_成立答案b1b2bnb1b2b17n(n17,nN*)解析解法1:从分析所提供的性质入手:由a100,可得aka20k0,因而当n19n时的情形由此可知:等差数列an之所以有等式成立的性质,关键在于在等差数列中有性质:an1a19n2a100,类似地,在等比数列bn中,也有性质:bn1b17nb1,因而得到答案:b1b2bnb1b2b17n(n17,nN*)解法2:因为在等差数列中有“和”的性质a1a2ana1a2a19n(n19,nN*)成立,故在等比数列bn中,由b91,可知应有“积”的性质b1b2bnb1b2b17n(n17,nN*)成立. (1)证明如下:当n8时,等式(1)为b1b2bnb1b2bnbn1b17n,即:bn1bn2b17n1.(2)b91,bk1b17kb1.bn1bn2b17nb1.(2)式成立,即(1)式成立;当n8时,(1)式即:b91显然成立;当8n17时,(1)式即:b1b2b17nb18nbnb1b2b17n,即:b18nb19nbn1(3)b91,b18kbkb1,b18nb19nbnb1,(3)式成立,即(1)式成立综上可知,当等比数列bn满足b91时,有:b1b2bnb1b2b17n(n17,nN*)成立12我们知道:12 1,22(11)212211,32(21)222221,42(31)232231,n2(n1)22(n1)1,左右两边分别相加,得n22123(n1)n123n.类比上述推理方法写出求122232n2的表达式的过程解析我们记S1(n)123n,S2(n)122232n2,Sk(n)1k2k3knk (kN*)已知13 1,23(11)313312311,33(21)323322321,43(31)33333
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业年度安全培训计划课件
- 空间信息处理技术-洞察及研究
- 2025年社区工作者招聘考试(公共基础知识)试题及答案
- 智能响应复合材料系统-洞察及研究
- 出纳安全培训建议及意见课件
- 朝阳县辅警考试题库2025(有答案)
- 麻醉药品和第一类精神药品使用与管理培训考试试题(附答案)
- 出差人身财产安全培训课件
- 出国行前培训安全考题课件
- HE错误恢复机制-洞察及研究
- 中学生天文知识竞赛考试题库500题(含答案)
- 生活妆课件教学课件
- 儿童英语小故事100篇englishforchildren
- 高中数学集合练习题160题-包含所有题型-附答案
- 人教部编版七年级语文上册《秋天的怀念》示范课教学课件
- 地质灾害防治工程勘察规范DB50143-2003
- 光伏并网系统中的网络安全分析
- 特种设备安全管理制度完整版完整版
- TBIA 28-2024 骨科疾病诊疗数据集 -骨科院内静脉血栓栓塞症
- 2024年中央企业全面质量管理知识竞赛考试真题库(含答案)
- 【课件】点线传情-造型元素之点线面高中美术人美版(2019)选择性必修1+绘画
评论
0/150
提交评论