基于MATLAB的复杂背景车牌识别检测系统设计.docx_第1页
基于MATLAB的复杂背景车牌识别检测系统设计.docx_第2页
基于MATLAB的复杂背景车牌识别检测系统设计.docx_第3页
基于MATLAB的复杂背景车牌识别检测系统设计.docx_第4页
基于MATLAB的复杂背景车牌识别检测系统设计.docx_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

基于MATLAB复杂背景车牌识别检测系统1. 选题目的和意义在复杂背景车牌识别检测系统中,由于拍摄时的光照条件、牌照的整洁程度的影响,和摄像机的焦距调整、镜头的光学畸变所产生的噪声都会不同程度地造成牌照字符的边界模糊、细节不清、笔划断开或粗细不均,加上牌照上的污斑等缺陷,致使字符提取困难,进而影响字符识别的准确性。因此,需要对字符在识别之前再进行一次针对性的处理。车牌识别的最终目的就是对车牌上的文字进行识别。识别方法目前主要有基于模板匹配算法和基于人工神经网络算法。2. 系统总体设计方案一个完整的车牌识别系统闭应包括车辆检测、图像采集、图像预处理、车牌定位、字符分割、字符识别等单元。当车辆到达触发图像采集单元时,系统采集当前的视频图像。车辆识别单元对图像进行处理,定位出牌照位置,再将车牌中的字符分割出来进行识别,然后组成车牌号码输出。车牌识别系统原理如图l所示。(1)图像预处理:对汽车图像进行图像转换、图像增强和边缘检测等。(2)车牌定位:从预处理后的汽车图像中分割出车牌图像。即在一幅车辆图像中找到车牌所在的位置。(3)字符分割:对车牌图像进行几何校正、去噪、二值化以及字符分割以从车牌图像中分离出组成车牌号码的单个字符图像(4)字符识别:对分割出来的字符进行预处理(二值化、归一化),然后分析提取,对分割出的字符图像进行识别给出文本形式的车牌号码。为了用于牌照的分割和牌照字符的识别,原始图象应具有适当的亮度,较大的对比度和清晰可辩的牌照图象。但由于该系统的摄像部分工作于开放的户外环境,加之车辆牌照的整洁度、自然光照条件、拍摄时摄像机与牌照的矩离和角度以及车辆行驶速度等因素的影响,牌照图象可能出现模糊、歪斜和缺损等严重缺陷,因此需要对原始图象进行识别前的预处理。3. 关键技术牌照的定位和分割是牌照识别系统的关键技术之一,其主要目的是在经图象预处理后的原始灰度图象中确定牌照的具体位置,并将包含牌照字符的一块子图象从整个图象中分割出来,供字符识别子系统识别之用,分割的准确与否直接关系到整个牌照字符识别系统的识别率。并且运用GUI人机交互进行,设计首先需要设计一个GUI界面布局图,合理布局按钮,画轴,静态框等控件。特意增加了复杂背景的车牌。然后是在控件按钮里面填充代码命令,方法是右击鼠标,选择View CallbacksCallbacks,如下图所示:该设计不再是单一地简单车牌的识别,而是可以进行复杂背景的多车牌识别;另外增加人机交互式GUI界面,让这个设计锦上添花。4. 实验结果与分析4.1车牌定位及图像读取及其图像处理车牌定位后系统边缘检测的仿真结果图如下图所示: 图4.1图像读取及检测结果图结果分析:图像车牌区域提取就是从原图中截取含车牌的部分,即RGB图像,然后进行字符的切割与识别。为了去除图像中的噪声点必须对截取的图像进行滤波处理,经滤波后,不仅去除了噪声,并且使图像得到了锐化。经图像进行滤波处理,经滤波后,不仅去除了噪声,并且使图像得到了锐化。经过这些步骤可以使得最终识别出的图像与原图的相似度更高,即结果更精确。仿真的结果也使得车牌部分从原图被准确的提取出来了,达到了车牌定位及图像读取及其图像处理的目的。4.2车牌字符分割及其图像处理对经边缘检测扫描后的图像经字符切割后的图像如下图所示: 图4.2字符分割及归一化结果图结果分析:从MATLAB编程运行结果看,便于图像进行匹配识别,必须先将连续的字符切割成单个字符,并且在切割字符之前要将周边空白切除掉。由以上结果图可以看到,车牌被切成只含字符部分,并且七个字符被切成清晰的七个字符,实现了字符切割。由右侧的归一化图像可以看出,切割出的图像像素值和模板图像达到了一致,由此便避免了切割出的图像像素值不一致所带来的问题。4.3车牌字符识别及其图像处理图像经上述处理后再进行识别,次图像和原图有一定的差异,其字符相似度曲线成一定规律,其曲线图如下图所示: 图4.3字符识别结果图结果分析:字符识别是这样一个过程,根据建立的模板字符库将分割出来切割的字符和模板相减得到一个差值,差值越小表明字符匹配程度越高。由图4.3可知,字符匹配识别的难易程度不一致,但总体能识别出汉字、字母和数字。5. 结论与体会本课题对车牌识别系统的软件部分进行了研究,分别从图像预处理、车牌定位、字符分割以及字符识别等方面进行了系统的分析。主要工作内容及结论如下:(1)整理和总结了国内外在车牌定位、分割、字符识别方面的研究成果和发展方向,系统介绍了我国车牌的固有特征,以及车牌识别的特点。(2)在车牌定位我们采用基于灰度跳变的定位方法,采用先对图像进行预处理,再进行二值化操作的方法。实验表明本方法既保留了车牌区域的信息,又减少了噪声的干扰,从而简化了二值化处理过程,实验表明本方法既保留了车牌区域的信息,又减少了噪声的干扰,从而简化了二值化处理过程,提高了后续处理的速度。(3)基于彩色分量的定位方法,运用基于蓝色象素点统计特性的方法对车牌是蓝色的车牌进行定位。实验表明,用该方法实现的车牌定位准确率较高。(4)用MATLAB编程运行结果可以得出,本设计采用的图像预处理、边缘检测、开闭运算子、车牌长宽比特征识别等对车牌的定位都是非常有效的,而本设计提出的二次水平投影分析和阈值技术有效检测了车牌图像的上下左右边框、旋转角度,准确实现的车牌字符的分割,对多个车牌进行实验,均有很高的正确率。本设计虽然只对蓝底白字车牌进行分割识别,对黑底白字车牌原则上整个算法可直接适用,对白底黑字车牌、黄底黑字车牌,需要对车牌定位算法进行调整,并将图像反转(0变1、1变0),因此,本设计提出的车牌字符的分割算法实验证明是准确、有效、可行的。参考文献【1】【Matlab数字图像类】【2】图像去雾处理【实现三种方法的含GUI界面的设计】 、图像检索【基于综合特征的图像检索毕业设计,实现根据包括形状、颜色和纹理不同权重实现检索功能,也就是以图搜图】、车牌识别【国内全国车牌识别、国外车牌识别,部分含毕业设计论文】、车型识别【差影法可做到判断三种车型】、基于GUI的数字信号处理教学软件、立体匹配、滤波器;【3】目标跟踪【使用差影法,实现人行走的跟踪、握手的跟踪】、缺陷检测matlab仿真、人脸识别【基于主要特征PCA的人脸识别,包括毕业论文】、人脸检测【灰白、彩色图像的人脸检测均可】、人民币识别;【4】复杂背景人脸检测、身份证号码识别、声音处理【包括GUI界面数字音乐处理、声音处理、声音信号频谱分析、matlab音乐播放器、语音信号的采集与处理】;【5】数字水印【基于DCT、dwt、小波、LSB,改进小波均有,另有数字语音水印】、数字图像处理教学系统【含GUI数字图像处理功能】、条形码分析【不含GUI】、二维码识别【含GUI】。附录:functiond=main(jpg)closeallclc%I=imread(car1.JPG);I=imread(chepai.jpg);figure(1),imshow(I);title(原图)I1=rgb2gray(I);figure(2),subplot(1,2,1),imshow(I1);title(灰度图);figure(2),subplot(1,2,2),imhist(I1);title(灰度图直方图);I2=edge(I1,robert,0.15,both);figure(3),imshow(I2);title(robert算子边缘检测)se=1;1;1;I3=imerode(I2,se);figure(4),imshow(I3);title(腐蚀后图像);se=strel(rectangle,25,25);I4=imclose(I3,se);figure(5),imshow(I4);title(平滑图像的轮廓);I5=bwareaopen(I4,2000);figure(6),imshow(I5);title(从对象中移除小对象);y,x,z=size(I5);myI=double(I5);ticBlue_y=zeros(y,1);fori=1:yforj=1:xif(myI(i,j,1)=1)Blue_y(i,1)=Blue_y(i,1)+1;%蓝色像素点统计endendendtempMaxY=max(Blue_y);%Y方向车牌区域确定PY1=MaxY;while(Blue_y(PY1,1)=5)&(PY11)PY1=PY1-1;endPY2=MaxY;while(Blue_y(PY2,1)=5)&(PY2y)PY2=PY2+1;endIY=I(PY1:PY2,:,:);%X方向%Blue_x=zeros(1,x);%进一步确定x方向的车牌区域forj=1:xfori=PY1:PY2if(myI(i,j,1)=1)Blue_x(1,j)=Blue_x(1,j)+1;endendendPX1=1;while(Blue_x(1,PX1)3)&(PX1x)PX1=PX1+1;endPX2=x;while(Blue_x(1,PX2)PX1)PX2=PX2-1;endPX1=PX1+50;%对车牌区域的校正PX2=PX2-50;PY1=PY1+45;PY2=PY2-45;dw=I(PY1:PY2-8,PX1:PX2,:);t=toc;figure(7),subplot(1,2,1),imshow(IY),title(行方向合理区域);figure(7),subplot(1,2,2),imshow(dw),title(定位剪切后的彩色车牌图像)imwrite(dw,dw.jpg);filename,filepath=uigetfile(dw.jpg,输入一个定位裁剪后的车牌图像);jpg=strcat(filepath,filename);a=imread(dw.jpg);b=rgb2gray(a);imwrite(b,1.车牌灰度图像.jpg);figure(8);subplot(3,2,1),imshow(b),title(1.车牌灰度图像)g_max=double(max(max(b);g_min=double(min(min(b);T=round(g_max-(g_max-g_min)/2);%T为二值化的阈值m,n=size(b);d=(double(b)=T);%d:二值图像imwrite(d,2.车牌二值图像.jpg);figure(8);subplot(3,2,2),imshow(d),title(2.车牌二值图像)figure(8),subplot(3,2,3),imshow(d),title(3.均值滤波前)%滤波h=fspecial(average,3);d=im2bw(round(filter2(h,d);imwrite(d,4.均值滤波后.jpg);figure(8),subplot(3,2,4),imshow(d),title(4.均值滤波后)%某些图像进行操作%膨胀或腐蚀%se=strel(square,3);%使用一个3X3的正方形结果元素对象对创建的图像进行膨胀%line/diamond/ball.se=eye(2);%eye(n)returnsthen-by-nidentitymatrix单位矩阵m,n=size(d);ifbwarea(d)/m/n=0.365d=imerode(d,se);elseifbwarea(d)/m/n=0.235d=imdilate(d,se);endimwrite(d,5.膨胀或腐蚀处理后.jpg);figure(8),subplot(3,2,5),imshow(d),title(5.膨胀或腐蚀处理后)%寻找连续有文字的块,若长度大于某阈值,则认为该块有两个字符组成,需要分割d=qiege(d);m,n=size(d);figure,subplot(2,1,1),imshow(d),title(n)k1=1;k2=1;s=sum(d);j=1;whilej=nwhiles(j)=0j=j+1;endk1=j;whiles(j)=0&j=round(n/6.5)val,num=min(sum(d(:,k1+5:k2-5);d(:,k1+num+5)=0;%分割endend%再切割d=qiege(d);%切割出7个字符y1=10;y2=0.25;flag=0;word1=;whileflag=0m,n=size(d);left=1;wide=0;whilesum(d(:,wide+1)=0wide=wide+1;endifwidey2flag=1;word1=temp;%WORD1endd(:,1:wide)=0;d=qiege(d);endend%分割出第二个字符word2,d=getword(d);%分割出第三个字符word3,d=getword(d);%分割出第四个字符word4,d=getword(d);%分割出第五个字符word5,d=getword(d);%分割出第六个字符word6,d=getword(d);%分割出第七个字符word7,d=getword(d);subplot(5,7,1),imshow(word1),title(1);subplot(5,7,2),imshow(word2),title(2);subplot(5,7,3),imshow(word3),title(3);subplot(5,7,4),imshow(word4),title(4);subplot(5,7,5),imshow(word5),title(5);subplot(5,7,6),imshow(word6),title(6);subplot(5,7,7),imshow(word7),title(7);m,n=size(word1);%商用系统程序中归一化大小为40*20,此处演示word1=imresize(word1,4020);word2=imresize(word2,4020);word3=imresize(word3,4020);word4=imresize(word4,4020);word5=imresize(word5,4020);word6=imresize(word6,4020);word7=imresize(word7,4020);subplot(5,7,15),imshow(word1),title(1);subplot(5,7,16),imshow(word2),title(2);subplot(5,7,17),imshow(word3),title(3);subplot(5,7,18),imshow(word4),title(4);subplot(5,7,19),imshow(word5),title(5);subplot(5,7,20),imshow(word6),title(6);subplot(5,7,21),imshow(word7),title(7);imwrite(word1,1.jpg);imwrite(word2,2.jpg);imwrite(word3,3.jpg);imwrite(word4,4.jpg);imwrite(word5,5.jpg);imwrite(word6,6.jpg);imwrite(word7,7.jpg);liccode=char(0:9A:Z苏豫陕鲁);%SubBw2=zeros(40,20);l=1;forI=1:7ii=int2str(I);t=imread(ii,.jpg);SegBw2=imresize(t,4020,nearest);ifl=1%第一位汉字识别kmin=37;kmax=40;elseifl=2%第二位AZ字母识别kmin=11;kmax=36;elsel=3%第三位以后是字母或数字识别kmin=1;kmax=36;endfork2=kmin:kmaxfname=strcat(字符模板,liccode(k2),.jpg);SamBw2=imread(fname);fori=1:40forj=1:20SubBw2(i,j)=SegBw2(i,j)-SamBw2(i,j);endend%以上相当于两幅图相减得到第三幅图Dmax=0;fork1=1:40forl1=1:20if(SubBw2(k1,l1)0|SubBw2(k1,l1)0)Dmax=Dmax+1;endendendError(k2)=Dmax;endError1=Error(kmin:kmax);MinError=min(Error1);findc=find(Error1=MinError);Code(l*2-1)=liccode(findc(1)+kmin-1);Code(l*2)=;l=l+1;endfigure(10),subplot(5,7,1:7),imshow(dw),title(第一步车牌定位),xlabel(,第二步车牌分割);subplot(6,7,15),imshow(word1);subplot(6,7,16),imshow(word2);subplot(6,7,17),imshow(word3);subplot(6,7,18),imshow(word4);subplot(6,7,19),imshow(word5);subplot(6,7,20),imshow(word6);subplot(6,7,21),imshow(word7);subplot(6,7,22:42),imshow(53.jpg);xlabel(第三步识别结果为:,Code,Color,b);functionword,result=getword(d)word=;flag=0;y1=8;y2=0.5;whileflag=0m,n=size(d);wide=0;whilesum(d(:,wide+1)=0&wide=n-2wide=wide+1;endtemp=qiege(imcrop(d,11widem);m1,n1=size(temp);ifwidey2d(:,1:wide)=0;ifsum(sum(d)=0d=qiege(d);%切割出最小范围elseword=;flag=1;endelseword=qiege(imcrop(d,11widem);d(:,1:wide)=0;ifsum(sum(d)=0;d=qiege(d);flag=1;elsed=;endendend%endresult=d;functione=qiege(d)m,n=size(d);top=1;bottom=m;left=1;right=n;%initwhilesum(d(top,:)=0&top=1bottom=bottom-1;endwhilesum(d(:,left)=0&left=1right=right-1;enddd=right-left;hh=bottom-top;e=imcrop(d,lefttopddhh);袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇羅膃蚈螂羁膂莈蚅袇膁蒀袀螃膀薂蚃肂腿节衿羈腿莄蚂袄芈蒇袇螀芇蕿蚀聿芆艿蒃肅芅蒁螈羁芄薃薁袆芃芃螆螂芃莅蕿肁节蒈螅羇莁薀薈袃莀艿螃蝿荿莂薆膈莈薄袁肄莇蚆蚄羀莇莆袀袆羃蒈蚂螂羂薁袈肀肁芀蚁羆肁莃袆袂肀薅虿袈聿蚇蒂膇肈莇螇肃肇葿薀罿肆薂螆袅肅芁薈螁膅莃螄聿膄蒆薇袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃薈葿螈聿蒄葿袁羁莀蒈羃膇芆蒇蚃羀膂蒆螅膅蒁薅袇羈莇薄罿膄芃薃虿羆艿薃袁节膅薂羄肅蒃薁蚃芀荿薀螆肃芅蕿袈芈膁蚈羀肁蒀蚇蚀袄莆蚇螂肀莂蚆羅袂芈蚅蚄膈膄蚄螇羁蒂蚃衿膆莈蚂羁罿芄螁蚁膄膀螁螃羇葿螀袅膃蒅蝿肈羆莁螈螇芁芇莄袀肄膃莄羂艿蒂莃蚂肂莈蒂螄芈芄蒁袆肀膀蒀罿袃

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论