




全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课时作业54曲线与方程 基础达标一、选择题1已知点P是直线2xy30上的一个动点,定点M(1,2),Q是线段PM延长线上的一点,且|PM|MQ|,则Q点的轨迹方程是()A2xy10 B2xy50C2xy10 D2xy50解析:由题意知,M为PQ中点,设Q(x,y),则P为(2x,4y),代入2xy30得2xy50.答案:D2方程|x|1所表示的曲线是()A一个圆 B两个圆C半个圆 D两个半圆解析:由题意得即或故原方程表示两个半圆答案:D3设点A为圆(x1)2y21上的动点,PA是圆的切线,且|PA|1,则P点的轨迹方程为()Ay22x B(x1)2y24Cy22x D(x1)2y22解析:如图,设P(x,y),圆心为M(1,0)连接MA,则MAPA,且|MA|1.又|PA|1,|PM|,即|PM|22,(x1)2y22.答案:D42019珠海模拟已知点A(1,0),直线l:y2x4,点R是直线l上的一点,若,则点P的轨迹方程为()Ay2x By2xCy2x8 Dy2x4解析:设P(x,y),R(x1,y1),由知,点A是线段RP的中点,即点R(x1,y1)在直线y2x4上,y12x14,y2(2x)4,即y2x.答案:B52019福建八校联考已知圆M:(x)2y236,定点N(,0),点P为圆M上的动点,点Q在NP上,点G在线段MP上,且满足2,0,则点G的轨迹方程是()A.1 B.1C.1 D.1解析:由2,0知GQ所在直线是线段NP的垂直平分线,连接GN,|GN|GP|,|GM|GN|MP|62,点G的轨迹是以M,N为焦点的椭圆,其中2a6,2c2,b24,点G的轨迹方程为1,故选A.答案:A二、填空题6在ABC中,A为动点,B,C为定点,B,C(a0),且满足条件sinCsinBsinA,则动点A的轨迹方程是_解析:由正弦定理得,即|AB|AC|BC|,故动点A是以B,C为焦点,为实轴长的双曲线右支即动点A的轨迹方程为1(x0且y0)答案:1(x0且y0)72019河南开封模拟如图,已知圆E:(x)2y216,点F(,0),P是圆E上任意一点线段PF的垂直平分线和半径PE相交于Q.则动点Q的轨迹的方程为_解析:连接QF,因为Q在线段PF的垂直平分线上,所以|QP|QF|,得|QE|QF|QE|QP|PE|4.又|EF|24,得Q的轨迹是以E,F为焦点,长轴长为4的椭圆为y21.答案:y2182019江西九江联考设F(1,0),点M在x轴上,点P在y轴,且2,当点P在y轴上运动时,则点N的轨迹方程为_解析:设M(x0,0),P(0,y0),N(x,y),由2,得即因为,(x0,y0),(1,y0),所以(x0,y0)(1,y0)0,所以x0y0,即xy20,所以点N的轨迹方程为y24x.答案:y24x三、解答题9在平面直角坐标系xOy中,点B与点A(1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于.求动点P的轨迹方程解析:因为点B与点A(1,1)关于原点O对称所以点B的坐标为(1,1)设点P的坐标为(x,y),由题设知直线AP与BP的斜率存在且均不为零,则,化简得x23y24(x1)故动点P的轨迹方程为1(x1)10如图所示,已知圆A:(x2)2y21与点B(2,0),分别求出满足下列条件的动点P的轨迹方程(1)PAB的周长为10;(2)圆P与圆A外切,且过B点(P为动圆圆心);(3)圆P与圆A外切,且与直线x1相切(P为动圆圆心)解析:(1)根据题意,知|PA|PB|AB|10,即|PA|PB|64|AB|,故P点轨迹是椭圆,且2a6,2c4,即a3,c2,b.因此其轨迹方程为1(y0)(2)设圆P的半径为r,则|PA|r1,|PB|r,因此|PA|PB|1.由双曲线的定义知,P点的轨迹为双曲线的右支,且2a1,2c4,即a,c2,b,因此其轨迹方程为4x2y21.(3)依题意,知动点P到定点A的距离等于到定直线x2的距离,故其轨迹为抛物线,且开口向左,p4.因此其轨迹方程为y28x.能力挑战11已知圆C1的圆心在坐标原点O,且恰好与直线l1:xy20相切(1)求圆的标准方程;(2)设点A为圆上一动点,ANx轴于点N,若动点Q满足m(1m)(其中m为非零常数),试求动点Q的轨迹方程解析:(1)设圆的半径为r, 圆心到直线l1的距离为d,则d2.因为rd2,圆心为坐标原点O,所以圆C1的方程为x2y24.(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 丽江市烟草公司2025秋招会计核算岗位高频笔试题库含答案
- 演播室消防安全应急预案
- 某烟草公司机关综合大楼室内装饰工程施工组织设计方案
- 合理用药咨询方案
- 张家口市烟草公司2025秋招市场营销类岗位高频笔试题库含答案
- 中国邮政2025临沧市秋招人力资源管理岗位高频笔试题库含答案
- 高考试题及答案 新浪
- 河源源城区中烟工业2025秋招质检员岗位高频笔试题库含答案
- 中国邮政集团2025眉山市秋招笔试题库含答案
- 青岛市烟草公司2025秋招物流调度岗位高频笔试题库含答案
- DB44∕T 2569-2024 碧道工程规划设计导则
- 心理健康五进活动方案
- 数据中心防雷应急预案范文
- 医疗纠纷预防和处理条例培训课件
- 医院后勤教育培训课件
- 战后日本教育改革与发展进程
- 质量缺陷闭环管理制度
- 涵洞拆除改造方案(3篇)
- 公司自动化项目管理制度
- 2025年上海市中考语文试卷真题及答案详解(精校打印版)
- 2025年上海市中考数学真题试卷及答案
评论
0/150
提交评论