




已阅读5页,还剩13页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
统计一、选择题1(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下:115,155) 2 155,195) 4 195,235) 9 235,275) 18 275,315) 1l 315,355) 12 355395) 7 395,435) 3 根据样本的频率分布估计,数据落在315,435)的概率约是A B C D【答案】B【解析】从到共有22,所以。2.(陕西理9)设(,),(,),(,)是变量和的个样本点,直线是由这些样本点通过最小二乘法得到的线性回归直线(如图),以下结论中正确的是 A和的相关系数为直线的斜率B和的相关系数在0到1之间C当为偶数时,分布在两侧的样本点的个数一定相同D直线过点【答案】D3.(山东理7)某产品的广告费用x与销售额y的统计数据如下表广告费用x(万元)4235销售额y(万元)49263954根据上表可得回归方程中的为94,据此模型预报广告费用为6万元时销售额为 A636万元 B655万元 C677万元 D720万元【答案】B4.(江西理6)变量X与Y相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U与V相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),表示变量Y与X之间的线性相关系数,表示变量V与U之间的线性相关系数,则 A B CD【答案】C5.(湖南理4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110由算得,0050001000013841663510828参照附表,得到的正确结论是 A再犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别有关”B再犯错误的概率不超过01%的前提下,认为“爱好该项运动与性别无关”C有99%以上的把握认为“爱好该项运动与性别有关”D有99%以上的把握认为“爱好该项运动与性别无关”【答案】C二、填空题6.(天津理9)一支田径队有男运动员48人,女运动员36人,若用分层抽样的方法从该队的全体运动员中抽取一个容量为21的样本,则抽取男运动员的人数为_【答案】127.(辽宁理14)调查了某地若干户家庭的年收入x(单位:万元)和年饮食支出y(单位:万元),调查显示年收入x与年饮食支出y具有线性相关关系,并由调查数据得到y对x的回归直线方程:.由回归直线方程可知,家庭年收入每增加1万元,年饮食支出平均增加_万元.【答案】0.2548.(江苏6)某老师从星期一到星期五收到信件数分别是10,6,8,5,6,则该组数据的方差【答案】3.29.(广东理13)某数学老师身高176cm,他爷爷、父亲和儿子的身高分别是173cm、170cm和182cm 因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为_cm【答案】185三、解答题10.(北京理17) 以下茎叶图记录了甲、乙两组个四名同学的植树棵树。乙组记录中有一个数据模糊,无法确认,在图中以X表示。()如果X=8,求乙组同学植树棵树的平均数和方差;()如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵树Y的分布列和数学期望。(注:方差,其中为, 的平均数)解(1)当X=8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10,所以平均数为方差为()当X=9时,由茎叶图可知,甲组同学的植树棵树是:9,9,11,11;乙组同学的植树棵数是:9,8,9,10。分别从甲、乙两组中随机选取一名同学,共有44=16种可能的结果,这两名同学植树总棵数Y的可能取值为17,18,19,20,21事件“Y=17”等价于“甲组选出的同学植树9棵,乙组选出的同学植树8棵”所以该事件有2种可能的结果,因此P(Y=17)=同理可得所以随机变量Y的分布列为:Y1718192021PEY=17P(Y=17)+18P(Y=18)+19P(Y=19)+20P(Y=20)+21P(Y=21)=17+18+19+20+21=1911.(辽宁理19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数解: (I)X可能的取值为0,1,2,3,4,且即X的分布列为 4分X的数学期望为 6分 (II)品种甲的每公顷产量的样本平均数和样本方差分别为: 8分品种乙的每公顷产量的样本平均数和样本方差分别为: 10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.概率一、选择题1.(浙江理9)有5本不同的书,其中语文书2本,数学书2本,物理书1本若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A B C D【答案】B2.(四川理1)有一个容量为66的样本,数据的分组及各组的频数如下:115,155) 2 155,195) 4 195,235) 9 235,275) 18 275,315) 1l 315,355) 12 355395) 7 395,435) 3 根据样本的频率分布估计,数据落在315,435)的概率约是A B C D【答案】B【解析】从到共有22,所以。3.(陕西理10)甲乙两人一起去游“2011西安世园会”,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时,则最后一小时他们同在一个景点的概率是A B C D【答案】D4.(全国新课标理4)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(A) (B) (C) (D)【答案】A5.(辽宁理5)从1,2,3,4,5中任取2各不同的数,事件A=“取到的2个数之和为偶数”,事件B=“取到的2个数均为偶数”,则P(BA)=(A) (B) (C) (D)【答案】B6.(湖北理5)已知随机变量服从正态分布,且(4),则(02)06 B04 C03 D02【答案】C7.(湖北理7)如图,用K、三类不同的元件连接成一个系统。当正常工作且、至少有一个正常工作时,系统正常工作,已知K、正常工作的概率依次为09、08、08,则系统正常工作的概率为A0960 B0864 C0720 D0576【答案】B8.(广东理6)甲、乙两队进行排球决赛,现在的情形是甲队只要在赢一次就获冠军,乙队需要再赢两局才能得冠军,若两队胜每局的概率相同,则甲队获得冠军的概率为A BC D【答案】D9.(福建理4)如图,矩形ABCD中,点E为边CD的中点,若在矩形ABCD内部随机取一个点Q,则点Q取自ABE内部的概率等于A B C D【答案】C二、填空题10.(湖北理12)在30瓶饮料中,有3瓶已过了保质期。从这30瓶饮料中任取2瓶,则至少取到一瓶已过保质期饮料的概率为 。(结果用最简分数表示)【答案】11.(福建理13)盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个。若从中随机取出2个球,则所取出的2个球颜色不同的概率等于_。【答案】12.(浙江理15)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙丙公司面试的概率为,且三个公司是否让其面试是相互独立的。记X为该毕业生得到面试得公司个数。若,则随机变量X的数学期望 【答案】13.(湖南理15)如图4,EFGH 是以O 为圆心,半径为1的圆的内接正方形。将一颗豆子随机地扔到该图内,用A表示事件“豆子落在正方形EFGH内”, B表示事件“豆子落在扇形OHE(阴影部分)内”,则(1)P(A)= _; (2)P(B|A)= 【答案】(1)14.(上海理9)马老师从课本上抄录一个随机变量的概率分布律如下表请小牛同学计算的数学期望,尽管“!”处无法完全看清,且两个“?”处字迹模糊,但能肯定这两个“?”处的数值相同。据此,小牛给出了正确答案 。【答案】215.(重庆理13)将一枚均匀的硬币投掷6次,则正面出现的次数比反面出现的次数多的概率_【答案】16.(上海理12)随机抽取9个同学中,至少有2个同学在同一月出生的概率是 (默认每月天数相同,结果精确到)。【答案】17.(江西理12)小波通过做游戏的方式来确定周末活动,他随机地往单位圆内投掷一点,若此点到圆心的距离大于,则周末去看电影;若此点到圆心的距离小于,则去打篮球;否则,在家看书,则小波周末不在家看书的概率为 【答案】18.(江苏5)5从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率为_【答案】三、解答题19.(湖南理18)某商店试销某种商品20天,获得如下数据:日销售量(件)0123频数1595试销结束后(假设该商品的日销售量的分布规律不变),设某天开始营业时有该商品3件,当天营业结束后检查存货,若发现存货少于2件,则当天进货补充至3件,否则不进货,将频率视为概率。()求当天商品不进货的概率;()记X为第二天开始营业时该商品的件数,求X的分布列和数学期型。解(I)(“当天商品不进货”)(“当天商品销售量为0件”)(“当天商品销售量为1件”)()由题意知,的可能取值为2,3. (“当天商品销售量为1件”) (“当天商品销售量为0件”)(“当天商品销售量为2件”)(“当天商品销售量为3件”) 故的分布列为23 的数学期望为22.(福建理19)某产品按行业生产标准分成8个等级,等级系数X依次为1,2,8,其中X5为标准A,X为标准B,已知甲厂执行标准A生产该产品,产品的零售价为6元/件;乙厂执行标准B生产该产品,产品的零售价为4元/件,假定甲、乙两厂得产品都符合相应的执行标准(I)已知甲厂产品的等级系数X1的概率分布列如下所示:5678P04ab01且X1的数字期望EX1=6,求a,b的值;(II)为分析乙厂产品的等级系数X2,从该厂生产的产品中随机抽取30件,相应的等级系数组成一个样本,数据如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7用这个样本的频率分布估计总体分布,将频率视为概率,求等级系数X2的数学期望 (III)在(I)、(II)的条件下,若以“性价比”为判断标准,则哪个工厂的产品更具可购买性?说明理由注:(1)产品的“性价比”=; (2)“性价比”大的产品更具可购买性解:本小题主要考查概率、统计等基础知识,考查数据处理能力、运算求解能力、应用意识,考查函数与方程思想、必然与或然思想、分类与整合思想,满分13分。解:(I)因为又由X1的概率分布列得由(II)由已知得,样本的频率分布表如下:345678030202010101用这个样本的频率分布估计总体分布,将频率视为概率,可得等级系数X2的概率分布列如下:345678P030202010101所以即乙厂产品的等级系数的数学期望等于4.8.(III)乙厂的产品更具可购买性,理由如下:因为甲厂产品的等级系数的期望数学等于6,价格为6元/件,所以其性价比为因为乙厂产吕的等级系数的期望等于4.8,价格为4元/件,所以其性价比为据此,乙厂的产品更具可购买性。23.(广东理17)为了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽出取14件和5件,测量产品中的微量元素x,y的含量(单位:毫克)下表是乙厂的5件产品的测量数据:编号12345x169178166175180y7580777081(1)已知甲厂生产的产品共有98件,求乙厂生产的产品数量;(2)当产品中的微量元素x,y满足x175,且y75时,该产品为优等品。用上述样本数据估计乙厂生产的优等品的数量;(3)从乙厂抽出的上述5件产品中,随机抽取2件,求抽取的2件产品中优等品数的分布列极其均值(即数学期望)。解:(1),即乙厂生产的产品数量为35件。 (2)易见只有编号为2,5的产品为优等品,所以乙厂生产的产品中的优等品故乙厂生产有大约(件)优等品, (3)的取值为0,1,2。所以的分布列为012P故24.(辽宁理19)某农场计划种植某种新作物,为此对这种作物的两个品种(分别称为品种家和品种乙)进行田间试验选取两大块地,每大块地分成n小块地,在总共2n小块地中,随机选n小块地种植品种甲,另外n小块地种植品种乙(I)假设n=4,在第一大块地中,种植品种甲的小块地的数目记为X,求X的分布列和数学期望;(II)试验时每大块地分成8小块,即n=8,试验结束后得到品种甲和品种乙在个小块地上的每公顷产量(单位:kg/hm2)如下表:品种甲403397390404388400412406品种乙419403412418408423400413分别求品种甲和品种乙的每公顷产量的样本平均数和样本方差;根据试验结果,你认为应该种植哪一品种?附:样本数据的的样本方差,其中为样本平均数解: (I)X可能的取值为0,1,2,3,4,且即X的分布列为 4分X的数学期望为 6分 (II)品种甲的每公顷产量的样本平均数和样本方差分别为: 8分品种乙的每公顷产量的样本平均数和样本方差分别为: 10分由以上结果可以看出,品种乙的样本平均数大于品种甲的样本平均数,且两品种的样本方差差异不大,故应该选择种植品种乙.25.(全国大纲理18)根据以往统计资料,某地车主购买甲种保险的概率为05,购买乙种保险但不购买甲种保险的概率为03,设各车主购买保险相互独立(I)求该地1位车主至少购买甲、乙两种保险中的l种的概率;()X表示该地的l00位车主中,甲、乙两种保险都不购买的车主数。求X的期望。 解:记A表示事件:该地的1位车主购买甲种保险; B表示事件:该地的1位车主购买乙种保险但不购买甲种保险; C表示事件:该地的1位车主至少购买甲、乙两种保险中的1种; D表示事件:该地的1位车主甲、乙两种保险都不购买; (I)3分 6分 (II),即X服从二项分布,10分所以期望12分26.(全国新课标理19)某种产品的质量以其质量指标值衡量,质量指标越大表明质量越好,且质量指标值大于或等于102的产品为优质品现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每产品的质量指标值,得到时下面试验结果:A配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数82042228B配方的频数分布表指标值分组90,94)94,98)98,102)102,106)106,110频数412423210(I)分别估计用A配方,B配方生产的产品的优质品率;(II)已知用B配方生产的一种产品利润y(单位:元)与其质量指标值t的关系式为从用B配方生产的产品中任取一件,其利润记为X(单位:元)求X的分布列及数学期望(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)解()由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42()用B配方生产的100件产品中,其质量指标值落入区间的频率分别为0.04,054,0.42,因此P(X=-2)=0.04, P(X=2)=0.54, P(X=4)=0.42,即X的分布列为2240.040.540.42X的数学期望值EX=-20.04+20.54+40.42=2.6827.(山东理18)红队队员甲、乙、丙与蓝队队员A、B、C进行围棋比赛,甲对A,乙对B,丙对C各一盘,已知甲胜A,乙胜B,丙胜C的概率分别为0.6,0.5,0.5,假设各盘比赛结果相互独立。()求红队至少两名队员获胜的概率;()用表示红队队员获胜的总盘数,求的分布列和数学期望.解:(I)设甲胜A的事件为D,乙胜B的事件为E,丙胜C的事件为F,则分别表示甲不胜A、乙不胜B,丙不胜C的事件。因为由对立事件的概率公式知红队至少两人获胜的事件有:由于以上四个事件两两互斥且各盘比赛的结果相互独立,因此红队至少两人获胜的概率为 (II)由题意知可能的取值为0,1,2,3。又由(I)知是两两互斥事件,且各盘比赛的结果相互独立,因此由对立事件的概率公式得所以的分布列为:0123P0103504015因此28.(陕西理20)如图,A地到火车站共有两条路径L1和L2,据统计,通过两条路径所用的时间互不影响,所用时间落在各时间段内的频率如下表:时间(分钟)10202030304040505060L1的频率0102030202L2的频率001040401现甲、乙两人分别有40分钟和50分钟时间用于赶往火车站。()为了尽最大可能在各自允许的时间内赶到火车站,甲和乙应如何选择各自的路径?()用X表示甲、乙两人中在允许的时间内能赶到火车站的人数,针对()的选择方案,求X的分布列和数学期望。解()Ai表示事件“甲选择路径Li时,40分钟内赶到火车站”,Bi表示事件“乙选择路径Li时,50分钟内赶到火车站”,i=1,2用频率估计相应的概率可得P(A1)=01+02+03=06,P(A2)=01+04=05,P(A1) P(A2), 甲应选择LiP(B1)=01+02+03+02=08,P(B2)=01+04+04=09, P(B2) P(B1), 乙应选择L2()A,B分别表示针对()的选择方案,甲、乙在各自允许的时间内赶到火车站,由()知,又由题意知,A,B独立, 的分布列为X012P00404205429.(四川理18)本着健康、低碳的生活理念,租自行车骑游的人越来越多。某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算)。有人独立来该租车点则车骑游。各租一车一次。设甲、乙不超过两小时还车的概
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司环保活动方案
- 公司节能推广活动方案
- 2025年行业伦理道德与法律法规考核试题及答案
- 2025年文化产业管理考试试卷及答案
- 2025年文艺策划师职业发展评估考试试题及答案
- 2025年网络营销与电子商务考试试题及答案
- 2025年设施管理工程师职业资格考试试题及答案
- 2025年农业经济与发展考试试卷及答案
- 2025年历史文化遗产保护与传承考试卷及答案
- 2025年计算机网络基本知识考试试题及答案
- 2023年甘肃白银市会宁县选聘行政村专职化村党组织书记6人高频考点历年难、易点深度预测(共500题含答案解析)模拟试卷
- 2021年中信公司组织架构和部门职能
- 大班幼儿幼小衔接“四准备”能力测评表
- 抗生素用药原则
- 全自动橡胶注射硫化成型机操作规程
- 申报正高工程师职称技术总结范文
- 幼儿园中班红色经典故事《抗日英雄王二小》红色革命教育绘本故事PPT课件【幼儿教案】
- 贝雷法简介及贝雷三参数在沥青混合料配合级配设计中应用
- 信用管理师(三级)理论考试题库(300题)
- 电大《中国现代文学专题》期末复习题及答案
- 投标密封条格式大全
评论
0/150
提交评论