自然语言处理NLP.ppt_第1页
自然语言处理NLP.ppt_第2页
自然语言处理NLP.ppt_第3页
自然语言处理NLP.ppt_第4页
自然语言处理NLP.ppt_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

1 StatisticalNLP Lecture8 StatisticalInference n gramModelsoverSparseData 2 Overview StatisticalInferenceconsistsoftakingsomedata generatedinaccordancewithsomeunknownprobabilitydistribution andthenmakingsomeinferencesaboutthisdistribution Therearethreeissuestoconsider DividingthetrainingdataintoequivalenceclassesFindingagoodstatisticalestimatorforeachequivalenceclassCombiningmultipleestimators 3 FormingEquivalenceClassesI ClassificationProblem trytopredictthetargetfeaturebasedonvariousclassificatoryfeatures ReliabilityversusdiscriminationMarkovAssumption Onlythepriorlocalcontextaffectsthenextentry n 1 thMarkovModelorn gramSizeofthen grammodelsversusnumberofparameters wewouldlikentobelarge butthenumberofparametersincreasesexponentiallywithn Thereexistotherwaystoformequivalenceclassesofthehistory buttheyrequiremorecomplicated methods willusen gramshere 4 StatisticalEstimatorsI Overview Goal ToderiveagoodprobabilityestimateforthetargetfeaturebasedonobserveddataRunningExample Fromn gramdataP w1 wn spredictP wn w1 wn 1 Solutionswewilllookat MaximumLikelihoodEstimationLaplace s Lidstone sandJeffreys Perks LawsHeldOutEstimationCross ValidationGood TuringEstimation 5 StatisticalEstimatorsII MaximumLikelihoodEstimation PMLE w1 wn C w1 wn N whereC w1 wn isthefrequencyofn gramw1 wnPMLE wn w1 wn 1 C w1 wn C w1 wn 1 ThisestimateiscalledMaximumLikelihoodEstimate MLE becauseitisthechoiceofparametersthatgivesthehighestprobabilitytothetrainingcorpus MLEisusuallyunsuitableforNLPbecauseofthesparsenessofthedata UseaDiscountingor Smoothingtechnique 6 StatisticalEstimatorsIII SmoothingTechniques Laplace PLAP w1 wn C w1 wn 1 N B whereC w1 wn isthefrequencyofn gramw1 wnandBisthenumberofbinstraininginstancesaredividedinto AddingOneProcessTheideaistogivealittlebitoftheprobabilityspacetounseenevents However inNLPapplicationsthatareverysparse Laplace sLawactuallygivesfartoomuchoftheprobabilityspacetounseenevents 7 StatisticalEstimatorsIV SmoothingTechniques LidstoneandJeffrey Perks Sincetheaddingoneprocessmaybeaddingtoomuch wecanaddasmallervalue PLID w1 wn C w1 wn N B whereC w1 wn isthefrequencyofn gramw1 wnandBisthenumberofbinstraininginstancesaredividedinto and 0 Lidstone sLawIf 1 2 Lidstone sLawcorrespondstotheexpectationofthelikelihoodandiscalledtheExpectedLikelihoodEstimation ELE ortheJeffreys PerksLaw 8 StatisticalEstimatorsV RobustTechniques HeldOutEstimation Foreachn gram w1 wn wecomputeC1 w1 wn andC2 w1 wn thefrequenciesofw1 wnintrainingandheldoutdata respectively LetNrbethenumberofbigramswithfrequencyrinthetrainingtext LetTrbethetotalnumberoftimesthatalln gramsthatappearedrtimesinthetrainingtextappearedintheheldoutdata Anestimatefortheprobabilityofoneofthesen gramis Pho w1 wn Tr NrN whereC w1 wn r 9 StatisticalEstimatorsVI RobustTechniques Cross Validation HeldOutestimationisusefulifthereisalotofdataavailable Ifnot itisusefultouseeachpartofthedatabothastrainingdataandheldoutdata DeletedEstimation Jelinek Mercer 1985 LetNrabethenumberofn gramsoccurringrtimesintheathpartofthetrainingdataandTrabbethetotaloccurrencesofthosebigramsfrompartainpartb Pdel w1 wn Tr01 Tr10 N Nr0 Nr1 whereC w1 wn r Leave One Out Neyetal 1997 10 StatisticalEstimatorsVI RelatedApproach Good TuringEstimator IfC w1 wn r 0 PGT w1 wn r Nwherer r 1 S r 1 S r andS r isasmoothedestimateoftheexpectationofNr IfC w1 wn 0 PGT w1 wn N1 N0N SimpleGood Turing Gale Sampson 1995 Asasmoothingcurve useNr arb withb 1 andestimateaandbbysimplelinearregressiononthelogarithmicformofthisequation logNr loga blogr ifrislarge Forlowvaluesofr usethemeasuredNrdirectly 11 CombiningEstimatorsI Overview Ifwehaveseveralmodelsofhowthehistorypredictswhatcomesnext thenwemightwishtocombinetheminthehopeofproducinganevenbettermodel CombinationMethodsConsidered SimpleLinearInterpolationKatz sBackingOffGeneralLinearInterpolation 12 CombiningEstimatorsII SimpleLinearInterpolation Onewayofsolvingthesparsenessinatrigrammodelistomixthatmodelwithbigramandunigrammodelsthatsufferlessfromdatasparseness Thiscanbedonebylinearinterpolation alsocalledfinitemixturemodels Whenthefunctionsbeinginterpolatedalluseasubsetoftheconditioninginformationofthemostdiscriminatingfunction thismethodisreferredtoasdeletedinterpolation Pli wn wn 2 wn 1 1P1 wn 2P2 wn wn 1 3P3 wn wn 1 wn 2 where0 i 1and i i 1TheweightscanbesetautomaticallyusingtheExpectation Maximization EM algorithm 13 CombiningEstimatorsII Katz sBackingOffModel Inback offmodels differentmodelsareconsultedinorderdependingontheirspecificity Ifthen gramofconcernhasappearedmorethanktimes thenann gramestimateisusedbutanamountoftheMLEestimategetsdiscounted itisreservedforunseenn grams Ifthen gramoccurredktimesorless thenwewilluseanestimatefromashortern gram back offprobability normalizedbytheamountofprobabilityremainingandtheamountofdatacoveredbythisestimate Theprocesscontinuesrecursively 14 CombiningEstimatorsII GeneralLinearInterpolation Insi

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论