已阅读5页,还剩9页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
1 StatisticalNLP Lecture8 StatisticalInference n gramModelsoverSparseData 2 Overview StatisticalInferenceconsistsoftakingsomedata generatedinaccordancewithsomeunknownprobabilitydistribution andthenmakingsomeinferencesaboutthisdistribution Therearethreeissuestoconsider DividingthetrainingdataintoequivalenceclassesFindingagoodstatisticalestimatorforeachequivalenceclassCombiningmultipleestimators 3 FormingEquivalenceClassesI ClassificationProblem trytopredictthetargetfeaturebasedonvariousclassificatoryfeatures ReliabilityversusdiscriminationMarkovAssumption Onlythepriorlocalcontextaffectsthenextentry n 1 thMarkovModelorn gramSizeofthen grammodelsversusnumberofparameters wewouldlikentobelarge butthenumberofparametersincreasesexponentiallywithn Thereexistotherwaystoformequivalenceclassesofthehistory buttheyrequiremorecomplicated methods willusen gramshere 4 StatisticalEstimatorsI Overview Goal ToderiveagoodprobabilityestimateforthetargetfeaturebasedonobserveddataRunningExample Fromn gramdataP w1 wn spredictP wn w1 wn 1 Solutionswewilllookat MaximumLikelihoodEstimationLaplace s Lidstone sandJeffreys Perks LawsHeldOutEstimationCross ValidationGood TuringEstimation 5 StatisticalEstimatorsII MaximumLikelihoodEstimation PMLE w1 wn C w1 wn N whereC w1 wn isthefrequencyofn gramw1 wnPMLE wn w1 wn 1 C w1 wn C w1 wn 1 ThisestimateiscalledMaximumLikelihoodEstimate MLE becauseitisthechoiceofparametersthatgivesthehighestprobabilitytothetrainingcorpus MLEisusuallyunsuitableforNLPbecauseofthesparsenessofthedata UseaDiscountingor Smoothingtechnique 6 StatisticalEstimatorsIII SmoothingTechniques Laplace PLAP w1 wn C w1 wn 1 N B whereC w1 wn isthefrequencyofn gramw1 wnandBisthenumberofbinstraininginstancesaredividedinto AddingOneProcessTheideaistogivealittlebitoftheprobabilityspacetounseenevents However inNLPapplicationsthatareverysparse Laplace sLawactuallygivesfartoomuchoftheprobabilityspacetounseenevents 7 StatisticalEstimatorsIV SmoothingTechniques LidstoneandJeffrey Perks Sincetheaddingoneprocessmaybeaddingtoomuch wecanaddasmallervalue PLID w1 wn C w1 wn N B whereC w1 wn isthefrequencyofn gramw1 wnandBisthenumberofbinstraininginstancesaredividedinto and 0 Lidstone sLawIf 1 2 Lidstone sLawcorrespondstotheexpectationofthelikelihoodandiscalledtheExpectedLikelihoodEstimation ELE ortheJeffreys PerksLaw 8 StatisticalEstimatorsV RobustTechniques HeldOutEstimation Foreachn gram w1 wn wecomputeC1 w1 wn andC2 w1 wn thefrequenciesofw1 wnintrainingandheldoutdata respectively LetNrbethenumberofbigramswithfrequencyrinthetrainingtext LetTrbethetotalnumberoftimesthatalln gramsthatappearedrtimesinthetrainingtextappearedintheheldoutdata Anestimatefortheprobabilityofoneofthesen gramis Pho w1 wn Tr NrN whereC w1 wn r 9 StatisticalEstimatorsVI RobustTechniques Cross Validation HeldOutestimationisusefulifthereisalotofdataavailable Ifnot itisusefultouseeachpartofthedatabothastrainingdataandheldoutdata DeletedEstimation Jelinek Mercer 1985 LetNrabethenumberofn gramsoccurringrtimesintheathpartofthetrainingdataandTrabbethetotaloccurrencesofthosebigramsfrompartainpartb Pdel w1 wn Tr01 Tr10 N Nr0 Nr1 whereC w1 wn r Leave One Out Neyetal 1997 10 StatisticalEstimatorsVI RelatedApproach Good TuringEstimator IfC w1 wn r 0 PGT w1 wn r Nwherer r 1 S r 1 S r andS r isasmoothedestimateoftheexpectationofNr IfC w1 wn 0 PGT w1 wn N1 N0N SimpleGood Turing Gale Sampson 1995 Asasmoothingcurve useNr arb withb 1 andestimateaandbbysimplelinearregressiononthelogarithmicformofthisequation logNr loga blogr ifrislarge Forlowvaluesofr usethemeasuredNrdirectly 11 CombiningEstimatorsI Overview Ifwehaveseveralmodelsofhowthehistorypredictswhatcomesnext thenwemightwishtocombinetheminthehopeofproducinganevenbettermodel CombinationMethodsConsidered SimpleLinearInterpolationKatz sBackingOffGeneralLinearInterpolation 12 CombiningEstimatorsII SimpleLinearInterpolation Onewayofsolvingthesparsenessinatrigrammodelistomixthatmodelwithbigramandunigrammodelsthatsufferlessfromdatasparseness Thiscanbedonebylinearinterpolation alsocalledfinitemixturemodels Whenthefunctionsbeinginterpolatedalluseasubsetoftheconditioninginformationofthemostdiscriminatingfunction thismethodisreferredtoasdeletedinterpolation Pli wn wn 2 wn 1 1P1 wn 2P2 wn wn 1 3P3 wn wn 1 wn 2 where0 i 1and i i 1TheweightscanbesetautomaticallyusingtheExpectation Maximization EM algorithm 13 CombiningEstimatorsII Katz sBackingOffModel Inback offmodels differentmodelsareconsultedinorderdependingontheirspecificity Ifthen gramofconcernhasappearedmorethanktimes thenann gramestimateisusedbutanamountoftheMLEestimategetsdiscounted itisreservedforunseenn grams Ifthen gramoccurredktimesorless thenwewilluseanestimatefromashortern gram back offprobability normalizedbytheamountofprobabilityremainingandtheamountofdatacoveredbythisestimate Theprocesscontinuesrecursively 14 CombiningEstimatorsII GeneralLinearInterpolation Insi
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 IEC 60966-2-8:2025 RLV EN Radio frequency and coaxial cable assemblies - Part 2-8: Detail specification for cable assemblies for radio and TV receivers - Frequency range up
- 【正版授权】 IEC 61196-1-114:2025 RLV EN Coaxial communication cables - Part 1-114: Electrical test methods - Test for inductance
- 标准版收款合同范本
- 公司母婴护理协议书
- 河北邯郸市社会公益项目建设管理中心招考工作人员易考易错模拟试题(共500题)试卷后附参考答案
- 果场转让协议书范本
- 江苏盐城射阳县农业水利投资开发集团限公司招聘15人易考易错模拟试题(共500题)试卷后附参考答案
- 校园垃圾运输协议书
- 兼职合同协议书模板
- 分房分地协议书范本
- 南京市建筑工程施工图BIM智能审查数据标准技术导则
- 医院物业管理服务方案投标文件(技术方案)
- 统战工作宣传课件
- 广西南宁市天桃实验校2026届中考语文全真模拟试卷含解析
- 就业帮扶车间培训课件
- 制药工程导论课件第六章
- 泌尿外科发展简史
- 中医推拿按摩对膝关节病的疗效
- 中国老年患者术后谵妄防治专家共识
- 终身教育视野下人工智能赋能特殊职业教育的实践与探索
- 杭州市建德市公安局集中招聘警务辅助人员考试真题2024
评论
0/150
提交评论