




已阅读5页,还剩31页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Stata程序及运行结果(前面整理合并数据部分省略,考试会直接给合并好的数据)(由于是copy的,所以会缺少表格线)use C:Documents and SettingsAdministrator桌面合并数据.dta, cleardrop if q=. leverage=. profit=. fratio=. lna=.(416 observations deleted). sum q, dqPercentiles Smallest1% .601852 -7.6692855% .849397 .25189310% .938017 .283239 Obs 1039725% 1.12204 .283675 Sum of Wgt. 1039750% 1.4441 Mean 4.98767Largest Std. Dev. 184.905575% 2.066348 955.415890% 3.189917 1736.165 Variance 34190.0395% 4.42306 11665.94 Skewness 72.1676899% 11.19809 14665.54 Kurtosis 5324.15. gsort - q. drop if q50(25 observations deleted). sum leverage, dleveragePercentiles Smallest1% .0378113 .00172535% .087829 .007079910% .1376331 .0075213 Obs 1037225% .2841151 .0108272 Sum of Wgt. 1037250% .4686987 Mean .5390607Largest Std. Dev. 1.67691175% .6367149 41.9393890% .7588252 41.93938 Variance 2.81203195% .8406378 96.95931 Skewness 42.3892699% 1.6956 96.95931 Kurtosis 2225.629. drop if leverage1 leverage0(232 observations deleted). sum profit, dprofitPercentiles Smallest1% -.1462 -2.6817675% -.0283393 -1.14023210% .0102038 -1.094207 Obs 1014025% .0322641 -.6430355 Sum of Wgt. 1014050% .0566138 Mean .0653552Largest Std. Dev. .268733375% .086125 7.18842390% .1256777 7.188423 Variance .072217695% .1595877 8.599852 Skewness 60.5911999% .2545736 22.00289 Kurtosis 4581.194. drop if profit20(4 observations deleted). sum fratio, dfratioPercentiles Smallest1% .0277692 05% .1028079 010% .1602922 0 Obs 1013625% .2636119 0 Sum of Wgt. 1013650% .402213 Mean .4088882Largest Std. Dev. .192008375% .5483563 .955230890% .6696964 .9709213 Variance .036867295% .7325709 .9745661 Skewness .153633499% .8396031 .9745661 Kurtosis 2.416593. drop if fratio F = 0.0000Residual 486.489226 10120 .048072058 R-squared = 0.0142Adj R-squared = 0.0142Total 493.52184 10121 .048762162 Root MSE = .21925leverage Coef. Std. Err. t Pt 95% Conf. Intervalq -.0171031 .001414 -12.10 0.000 -.0198749 -.0143313_cons .4828087 .0033785 142.91 0.000 .4761862 .4894312. reg leverage q profit fratio lnaSource SS df MS Number of obs = 10122F( 4, 10117) = 1241.10Model 162.454363 4 40.6135909 Prob F = 0.0000Residual 331.067476 10117 .032723878 R-squared = 0.3292Adj R-squared = 0.3289Total 493.52184 10121 .048762162 Root MSE = .1809leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0104224 .0012615 8.26 0.000 .0079497 .0128951profit -.4919057 .0226995 -21.67 0.000 -.5364012 -.4474102fratio .3803813 .0097427 39.04 0.000 .3612837 .399479lna .0646686 .0015325 42.20 0.000 .0616646 .0676725_cons -1.097821 .033489 -32.78 0.000 -1.163466 -1.032175. test q( 1) q = 0F( 1, 10117) = 68.26Prob F = 0.0000. test q profit( 1) q = 0( 2) profit = 0F( 2, 10117) = 250.68Prob F = 0.0000. *test q=1. *test q=profit=1. *test q+profit=1. reg leverage q profit fratio lnaSource SS df MS Number of obs = 10122F( 4, 10117) = 1241.10Model 162.454363 4 40.6135909 Prob F = 0.0000Residual 331.067476 10117 .032723878 R-squared = 0.3292Adj R-squared = 0.3289Total 493.52184 10121 .048762162 Root MSE = .1809leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0104224 .0012615 8.26 0.000 .0079497 .0128951profit -.4919057 .0226995 -21.67 0.000 -.5364012 -.4474102fratio .3803813 .0097427 39.04 0.000 .3612837 .399479lna .0646686 .0015325 42.20 0.000 .0616646 .0676725_cons -1.097821 .033489 -32.78 0.000 -1.163466 -1.032175. ereturn listscalars:e(N) = 10122e(df_m) = 4e(df_r) = 10117e(F) = 1241.099558756532e(r2) = .329173605634022e(rmse) = .1808974246986086e(mss) = 162.4543634900055e(rss) = 331.0674763826105e(r2_a) = .3289083782368228e(ll) = 2946.854676865168e(ll_0) = 926.2762267636834e(rank) = 5macros:e(cmdline) : regress leverage q profit fratio lnae(title) : Linear regressione(marginsok) : XB defaulte(vce) : olse(depvar) : leveragee(cmd) : regresse(properties) : b Ve(predict) : regres_pe(model) : olse(estat_cmd) : regress_estatmatrices:e(b) : 1 x 5e(V) : 5 x 5functions:e(sample) . gen r2ur=e(r2). reg leverage fratio lnaSource SS df MS Number of obs = 10122F( 2, 10119) = 2126.58Model 146.048038 2 73.0240189 Prob F = 0.0000Residual 347.473802 10119 .034338749 R-squared = 0.2959Adj R-squared = 0.2958Total 493.52184 10121 .048762162 Root MSE = .18531leverage Coef. Std. Err. t Pt 95% Conf. Intervalfratio .4065295 .0098893 41.11 0.000 .3871446 .4259144lna .0580092 .0014631 39.65 0.000 .0551413 .0608771_cons -.9750239 .0311435 -31.31 0.000 -1.036071 -.9139764. ereturn listscalars:e(N) = 10122e(df_m) = 2e(df_r) = 10119e(F) = 2126.577725823851e(r2) = .29593024275006e(rmse) = .1853071749435181e(mss) = 146.0480378759594e(rss) = 347.4738019966565e(r2_a) = .2957910847784719e(ll) = 2702.068978698881e(ll_0) = 926.2762267636834e(rank) = 3macros:e(cmdline) : regress leverage fratio lnae(title) : Linear regressione(marginsok) : XB defaulte(vce) : olse(depvar) : leveragee(cmd) : regresse(properties) : b Ve(predict) : regres_pe(model) : olse(estat_cmd) : regress_estatmatrices:e(b) : 1 x 3e(V) : 3 x 3functions:e(sample) . gen r2r=e(r2). gen F=(r2ur-r2r)/2)/(1-r2ur)/(10122-4-1). . capture drop r2ur r2r F. reg leverage q profit fratio lnaSource SS df MS Number of obs = 10122F( 4, 10117) = 1241.10Model 162.454363 4 40.6135909 Prob F = 0.0000Residual 331.067476 10117 .032723878 R-squared = 0.3292Adj R-squared = 0.3289Total 493.52184 10121 .048762162 Root MSE = .1809leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0104224 .0012615 8.26 0.000 .0079497 .0128951profit -.4919057 .0226995 -21.67 0.000 -.5364012 -.4474102fratio .3803813 .0097427 39.04 0.000 .3612837 .399479lna .0646686 .0015325 42.20 0.000 .0616646 .0676725_cons -1.097821 .033489 -32.78 0.000 -1.163466 -1.032175. ereturn listscalars:e(N) = 10122e(df_m) = 4e(df_r) = 10117e(F) = 1241.099558756532e(r2) = .329173605634022e(rmse) = .1808974246986086e(mss) = 162.4543634900055e(rss) = 331.0674763826105e(r2_a) = .3289083782368228e(ll) = 2946.854676865168e(ll_0) = 926.2762267636834e(rank) = 5macros:e(cmdline) : regress leverage q profit fratio lnae(title) : Linear regressione(marginsok) : XB defaulte(vce) : olse(depvar) : leveragee(cmd) : regresse(properties) : b Ve(predict) : regres_pe(model) : olse(estat_cmd) : regress_estatmatrices:e(b) : 1 x 5e(V) : 5 x 5functions:e(sample) . gen r2ur=e(r2). reg leverage lnaSource SS df MS Number of obs = 10122F( 1, 10120) = 2196.68Model 88.0196216 1 88.0196216 Prob F = 0.0000Residual 405.502218 10120 .040069389 R-squared = 0.1784Adj R-squared = 0.1783Total 493.52184 10121 .048762162 Root MSE = .20017leverage Coef. Std. Err. t Pt 95% Conf. Intervallna .072032 .0015369 46.87 0.000 .0690194 .0750446_cons -1.113191 .0334455 -33.28 0.000 -1.178751 -1.047631. ereturn listscalars:e(N) = 10122e(df_m) = 1e(df_r) = 10120e(F) = 2196.679894874584e(r2) = .1783500028923137e(rmse) = .2001733977342292e(mss) = 88.01962156870104e(rss) = 405.5022183039149e(r2_a) = .1782688121811371e(ll) = 1920.46295803989e(ll_0) = 926.2762267636834e(rank) = 2macros:e(cmdline) : regress leverage lnae(title) : Linear regressione(marginsok) : XB defaulte(vce) : olse(depvar) : leveragee(cmd) : regresse(properties) : b Ve(predict) : regres_pe(model) : olse(estat_cmd) : regress_estatmatrices:e(b) : 1 x 2e(V) : 2 x 2functions:e(sample) . gen r2r=e(r2). gen F=(r2ur-r2r)/3)/(1-r2ur)/(10122-4-1). . drop r2ur r2r F. gen lnq=ln(q). gen lnleverage=ln(leverage). gen lnprofit=ln(profit)(770 missing values generated). gen lnfratio=ln(fratio). reg leverage q profit fratio lna Source SS df MS Number of obs = 10122F( 4, 10117) = 1241.10Model 162.454363 4 40.6135909 Prob F = 0.0000Residual 331.067476 10117 .032723878 R-squared = 0.3292Adj R-squared = 0.3289Total 493.52184 10121 .048762162 Root MSE = .1809leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0104224 .0012615 8.26 0.000 .0079497 .0128951profit -.4919057 .0226995 -21.67 0.000 -.5364012 -.4474102fratio .3803813 .0097427 39.04 0.000 .3612837 .399479lna .0646686 .0015325 42.20 0.000 .0616646 .0676725_cons -1.097821 .033489 -32.78 0.000 -1.163466 -1.032175. display .0104224*1.541244.01606346. reg lnleverage lnq lnprofit lnfratio lnaSource SS df MS Number of obs = 9352F( 4, 9347) = 1165.37Model 1549.75886 4 387.439715 Prob F = 0.0000Residual 3107.51249 9347 .332460949 R-squared = 0.3328Adj R-squared = 0.3325Total 4657.27136 9351 .498050621 Root MSE = .57659lnleverage Coef. Std. Err. t Pt 95% Conf. Intervallnq .1182021 .0137478 8.60 0.000 .0912534 .1451508lnprofit -.1480528 .0081074 -18.26 0.000 -.163945 -.1321606lnfratio .3743693 .0091822 40.77 0.000 .3563702 .3923683lna .2064762 .005279 39.11 0.000 .1961283 .2168242_cons -5.572398 .1249991 -44.58 0.000 -5.817423 -5.327372. . gen profit_2=profit2. reg leverage q profit profit_2 fratio lnaSource SS df MS Number of obs = 10122F( 5, 10116) = 1123.89Model 176.246892 5 35.2493785 Prob F = 0.0000Residual 317.274948 10116 .031363676 R-squared = 0.3571Adj R-squared = 0.3568Total 493.52184 10121 .048762162 Root MSE = .1771leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0097995 .0012353 7.93 0.000 .007378 .012221profit -.8495927 .0280139 -30.33 0.000 -.9045055 -.7946799profit_2 .4402733 .0209949 20.97 0.000 .3991192 .4814275fratio .3651988 .0095655 38.18 0.000 .3464485 .3839492lna .0673593 .0015058 44.73 0.000 .0644078 .0703109_cons -1.131486 .0328249 -34.47 0.000 -1.19583 -1.067143. sum profitVariable Obs Mean Std. Dev. Min Maxprofit 10122 .0613722 .0806199 -.6430355 2.645649. display (-.8495927+2*.4402733*.0613722)*.0806199-.06413729. display -1*(-.8495927)/(2*.4402733).96484695. . gen q_profit=q*profit. reg leverage q profit q_profit fratio lnaSource SS df MS Number of obs = 10122F( 5, 10116) = 1024.71Model 165.922728 5 33.1845455 Prob F = 0.0000Residual 327.599112 10116 .032384254 R-squared = 0.3362Adj R-squared = 0.3359Total 493.52184 10121 .048762162 Root MSE = .17996leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0086458 .0012666 6.83 0.000 .0061631 .0111286profit -.7199138 .0315488 -22.82 0.000 -.7817558 -.6580718q_profit .0531124 .0051322 10.35 0.000 .0430523 .0631725fratio .3745416 .0097085 38.58 0.000 .3555111 .3935721lna .0654486 .0015264 42.88 0.000 .0624566 .0684405_cons -1.101763 .033317 -33.07 0.000 -1.167071 -1.036455. sum profitVariable Obs Mean Std. Dev. Min Maxprofit 10122 .0613722 .0806199 -.6430355 2.645649. sum qVariable Obs Mean Std. Dev. Min Maxq 10122 1.825711 1.541244 .283239 44.53. display (.0086458+.0531124*.0613722)*1.541244.01834916. . reg leverage q profit fratio lna Source SS df MS Number of obs = 10122F( 4, 10117) = 1241.10Model 162.454363 4 40.6135909 Prob F = 0.0000Residual 331.067476 10117 .032723878 R-squared = 0.3292Adj R-squared = 0.3289Total 493.52184 10121 .048762162 Root MSE = .1809leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0104224 .0012615 8.26 0.000 .0079497 .0128951profit -.4919057 .0226995 -21.67 0.000 -.5364012 -.4474102fratio .3803813 .0097427 39.04 0.000 .3612837 .399479lna .0646686 .0015325 42.20 0.000 .0616646 .0676725_cons -1.097821 .033489 -32.78 0.000 -1.163466 -1.032175. predict pre_leverage, xb. gen pre_leverage_2=pre_leverage2. reg leverage q profit fratio lna pre_leverage_2Source SS df MS Number of obs = 10122F( 5, 10116) = 1014.85Model 164.859349 5 32.9718698 Prob F = 0.0000Residual 328.662491 10116 .032489372 R-squared = 0.3340Adj R-squared = 0.3337Total 493.52184 10121 .048762162 Root MSE = .18025leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0056752 .0013727 4.13 0.000 .0029844 .008366profit -.3891551 .0255773 -15.21 0.000 -.4392918 -.3390185fratio .217856 .0212386 10.26 0.000 .1762241 .2594879lna .0359964 .0036657 9.82 0.000 .0288108 .0431819pre_levera2 .4584789 .0532885 8.60 0.000 .3540228 .562935_cons -.5069118 .0763578 -6.64 0.000 -.6565883 -.3572353. . *第六章. reg leverage q profit fratio lnaSource SS df MS Number of obs = 10122F( 4, 10117) = 1241.10Model 162.454363 4 40.6135909 Prob F = 0.0000Residual 331.067476 10117 .032723878 R-squared = 0.3292Adj R-squared = 0.3289Total 493.52184 10121 .048762162 Root MSE = .1809leverage Coef. Std. Err. t Pt 95% Conf. Intervalq .0104224 .0012615 8.26 0.000 .0079497 .0128951profit -.4919057 .0226995 -21.67 0.000 -.5364012 -.4474102fratio .3803813 .0097427 39.04 0.000 .3612837 .399479lna .0646686 .0015325 42.20 0.000 .0616646 .0676725_cons -1.097821 .033489 -32.78 0.000 -1.163466 -1.032175. reg leverage q profit fratioSource SS df MS Number of obs = 10122F( 3, 10118) = 902.47Model 104.181387 3 34.7271289 Prob F = 0.0000Residual 389.340453 10118 .038479982 R-squared = 0.2111Adj R-s
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年贵港市教育局选调直属事业单位考试笔试试题(含答案)
- 2025年宁夏中考地理试题卷(含答案解析)
- 互联网医学考试题及答案
- 网络广告推广及效果评估合同
- 湛江一中大考试卷及答案
- 公务员时事政治试试题及答案2025年
- 腹膜炎护理考试题及答案
- 人保车险笔试题目及答案
- 泉州大队委笔试题目及答案
- 内燃机原理考试题及答案
- 2006WHO儿童身高体重参考值及评价标准
- 抗旱防涝知识培训课件
- 癌性疼痛中西医结合诊疗指南
- 日本分级诊疗制度及其对我国的启示
- 昌江黎族自治县生活垃圾无害化填埋场渗滤液扩容改建工程项目 环评报告
- 冷库建设工程施工进度计划及保证措施
- 建筑设计行业2024年财务挑战解析
- 慢性病防治健康教育知识讲座
- 市政污水管道施工组织设计
- 移动电源的安全使用与应急处理措施
- 退费账户确认书
评论
0/150
提交评论