




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考资源网() 您身边的高考专家 第5讲 动量与角动量一、知识点击1动量定理 质点动量定理:,即 即合外力的冲量等于质点动量的增量 质点系动量定理:将质点动量定理推广到有n个质点组成的质点系,即可得到质点系的动量定理 令和分别表示质点系各质点所受的外力和内力的总冲量,则和表示质点系中各质点总的末动量和初动量之矢量和,则: 而,因质点系内各质点之间的相互作用力是成对出现的,且等值反向。即所有外力对质点系的总冲量等于质点系总动量的增量2动量守恒定律 内容:系统不受外力或所受外力的合力为零,这个系统的动量就保持不变 表达式:系统内相互作用前总动量等于相互作用后总动量:。 系统总动量的变化量为零: 对于两个物体组成的系统可表达为:相互作用的两个物体的动量的变化量大小相等,方向相反。 或者作用前两物体的总动量等于作用后的总动量: 适用范围:动量守恒定律适用于宏观、微观,高速、低速 定律广义:质点系的内力不能改变它质心的运动状态质心守恒质点系在无外力作用或者在外力偶作用下,其质心将保持原来的运动状态。质点系的质心在外力作用下作某种运动,则内力不能改变质心的这种运动。 质心运动定理:作用在质点系上的合外力等于质点系总质量与质心加速度的乘积,即,其质心加速度:。定理只给出质心运动情况,并不涉及质点间的相对运动及它们绕质心的运动。3碰撞问题 弹性碰撞:碰撞时无机械能损失 由可得:, (2)非弹性碰撞:碰撞时有动能损失。为此引入恢复系数e,它由两球材料决定,与其质量、初速度无关。其定义式为e=1为完全弹性碰撞情形;e0时,碰后两物体结合一起速度相同,称为完全非弹性;0er2,所以F2F1(4)拉力作功A等于小球动能的增量即例6、一个无滑滚动的台球正面撞上一个同样的静止台球,请分析碰撞后两个球的运动证明两球的终态和两球之间或球与桌面之间的滑动摩擦因数无关(滚动摩擦可以忽略不计)分析和解:本题的焦点在于每一个小球相对于其与桌面的接触点的角动量保持不变可以想见,第一个台球停止下来并在原地转动,而第二个球则运动起来但无转动因此在整个碰撞过程中,第一个台球只是把动量传递给第二个球,角动量却保持了下来碰撞之后,摩擦使得第一个球向前运动,但转动越来越慢,同时摩擦使得第二个球平移运动越来越慢,同时增加了转动两球之间的摩擦可以忽略不计,因此碰撞过 程中, 它们之间的相互作用力与其表面垂直因而第一个球碰撞后停下来,同时第二个球得到了第一个球的初速度两个球的转动在碰撞前后没有变化,即第一个球在原地转动,第二个球无转动地以速度平移 台球和桌面之间的摩擦力很重要,将影响两球的运动第一个球在摩擦力F摩擦力=mg的作用下加速向前,而第二个球则在同样的力的作用下减速运动,如图57所示第一个球的转动由于摩擦力的作用将变慢,而第二个球的转动将因之增加这部分摩擦力的作用, 直到两球达到无摩擦滚动的状态为止,然后将保持那样的运动状态下面证明,两个小球最终的运动状态既不依赖于摩擦因数,也与摩擦因数随位置的可能变化无关碰撞后,原来运动的小球以角速度转动,其相对于转动轴的角动量为。由于小球的质心静止,即平动带来的角动量变化为零,所以小球相对于其与桌面接触点P的角动量也为.由于摩擦力经过P点,因此小球相对于P点的角动量不会因摩擦力的作用而变化(重力和桌面的支撑力之和为零,因此它们也不会产生净力矩) 以速度作无滑滚动的小球,其角动量为自身角动量和质心运动的角动量之和。如图58所示,左侧为碰撞后短时间内运动小球和它的受力情况,右侧为最后的无滑滚动状态根据角动量守恒,我们有,因此。由类似的道理可以得到,第二个小球的最终速度为,与摩擦因数的大小无关。 三、小试身手1 四个质量分别为m1、m2、m3、m4的小球,用已拉紧的不可伸长的轻绳互相连接,放在光滑的水平桌面上如图59所示,其中已知,如果给1小球一个沿着2、1两小球连线方向的冲量I,判断能否求出4个小球获得的速度。若m1=m2=m3=m4,且,则4小球的速度为多大? 200812232 一块质量为M的滑块静止在光滑水平面上,滑块内有一如图5一10所示的光滑管道,、已知,有一质量为m的小球从左端口滑下,求m自滑下到返回左端口的总时间(可取)3 由一光滑细管构成一半径为R的圆环,放在水平光滑桌面上(图5一11)管内A1、A2处有两个质量为m的小球,圆形管道的质量是,开始时管道静止,两小球向右以等大的速度开始运动,细管上P1、P2处有两个缺口(已知),小球自小孔中穿出后,将在平面上某处相遇,求:(1)相遇时两球与管道中心O的距离(2)从小球穿出缺口直到小球相遇的过程中,管道在平面上移动的路程s4 在图5一12 和图5一12 中,一个质量m=0.1 kg的小雪橇放在一块质量M1 kg的木板上雪橇上的马达牵引着一根绳子,使雪橇具有速度,忽略木板和桌面之间的摩擦雪橇和木板之间的动摩擦因数为=0.02。先握住木板,起动马达当雪橇达到速度时,放开木板在这瞬间,雪橇与木板一端的距离为L=0.5 m.绳子栓在:(1)远处的桩上;(2)木板的端点试描述在上述两种情形下木板与雪橇的运动雪橇何时到达木板一端?5 如图5一13所示,一质量为M、长为L带薄挡板P的木板,静止在水平的地面上,设木板与地面间的静摩擦因数与滑动摩擦因数相等,皆为质量为m的人从木板的一端由静止开始相对于地面匀加速地向前走向另一端,到达另一端时便骤然抓住挡板P而停在木板上已知人与木板间的静摩擦因数足够大,人在木板上不滑动问在什么条件下最后可使木板向前方移动的距离达到最大?其值等于多少? 6 弟兄五个在连续靠近放置的跳板上表演杂技他们各自的质量分别为60kg,50kg,40 kg,30 kg和20 kg。第一个最重的演员从2m高度跳到第一个跳板上(见图514)。老二、老三、老四接着一个个被弹起落到相邻的跳板上假定演员的肌力正好都用于克服各种阻力,并且跳板的质量可以忽略。试求最后一个兄弟被弹起的高度h5是多少?7 半径为R,无摩擦地旋转着的圆板的边缘,趴着n10个甲虫,每个的质量为,甲虫同时开始以同样的速度向板中心爬动。开始,板是以角速度旋转,假若甲虫们中间停住后,板旋转的角速度变为,板的转动惯量是,那么每个甲虫做了多少功?8 如图515所示,一块长为的光滑平板PQ固定在轻质弹簧上端,弹簧的下端与地面固定连接。平板被限制在两条竖直光滑的平行导轨之间(图中未画出竖直导轨),从而只能地竖直方向运动。平板与弹簧构成的振动系统的振动周期。一小球B放在光滑的水平台面上,台面的右侧边缘正好在平板P端的正上方,到P端的距离为。平板静止在其平衡位置。水球B与平板PQ的质量相等。现给小球一水平向右的速度,使它从水平台面抛出。已知小球B与平板发生弹性碰撞,碰撞时间极短,且碰撞过程中重力可以忽略不计。要使小球与平板PQ发生一次碰撞而且只发生一次碰撞,的值应在什么范围内?取参考解答1解:设1小球获得外力冲量I的同时,三根绳中的冲量分别为I1、I2、I3(如右图),由冲量定理可得对1小球: 对2小球: 对3小球: 对4小球: 由、的关联关系,可得 由方程一可解出,、九个未知数如果再把条件m1=m2=m3=m4,代入,可解得:2解:取滑块为参考系,小球受三个力:mg,FN和,设小球相对M的加速度是,则对m:对M :由,可解得所以下到底端时,小球因转弯和滑块发生一个比较猛烈的作用,此过程中动量守恒设转弯结束后小球和滑块的速度分别为和,那么 可求出,和,相对速度水平段的时间一个来回的总时间3解:(1)取管道为参考系,两小球自小孔穿出后将沿切线方向运动,因此小球从A1、A2处到P1、P2处的过程中动量守恒机械能守恒可解得小球相对环的速度环的速度小球从穿出小孔到相遇的时间 管道在平面上移动的路程4答案:(1)雪橇不能到达木板的另一端(2)木板不动提示:(1)木板与桌面间无摩擦,因此它们构成一孤立系统,而雪橇与木板是有摩擦的,在第一种情形中雪做匀速运动,雪橇与木板以不同的速度运动,这样就引起最大摩擦力mg,它作用在木板上,因而产生加速度,直至木板达到雪橇速度。加速时间在这段时间内,雪橇在木板上经过的距离为因此,雪撬离木板右端点的距离为雪橇不能到达木板的另一端,因为从这时起,木板也做匀速运动。在加速期间,马达必须用力mg牵引绳子,但以后马达不能施加任何力,它只是卷绕绳子。(2)我们可以用动量守恒定律来分析。当我们放开木板时,雪撬的动量为。释放后的木板具有速度,它由下式决定:此式表明,所以木板保持不动,雪橇以同一速度继续前进。5 解:在人从木板的一端向另一端运动的过程中,先讨论木板发生向后运动的情形设人开始运动到刚抵达另一端尚未停下这段过程中所用的时间为t,以x1表示木板向后移动的距离,如图所示以f表示人与木板间的静摩擦力,以F表示地面作用在木板上的摩擦力,以和分别表示人和木板的加速度,则有 ,由以上四式联立解之,得对人和木板组成的系统,人在木板另一端骤然停下后,两者的总动量等于从开始到此时地面的摩擦力F(外力)的冲量,忽略人骤然停下那段极短的时间,则有V为人在木板另一端刚停下时两者一起运动的速度设人在木板另一端停下后两者一起向前移动的距离为x2,与地面的滑动摩擦因数为,则有 木板向前移动的净距离为将以上各式联立解之得由上式可知,欲使木板向前移动的距离X为最大值,应有即即木板向前移动的距离为最大的条件是:人作用于木板的静摩擦力等于地面作用于木板的滑动摩擦力移动的最大距离为由上面可见,在设木板发生向后运动,即的情况下,f = F时,X有极大值换句话说,在时间0一t内木板刚刚不动的条件下X有极大值再来讨论木板不动,即fF的情况这时,因为fF,所以人积累的动能和碰后的总动能都将变小,从而前进的距离x也小于上述的Xmax。6解:首先我们注意一下图517的翘板,中间是一个无限重的支柱第一个兄弟跳到翘板的一端,同时把第二个兄弟弹到空中,我们可以看作是弟兄们“通过”翘板的碰撞假定碰撞的持续时间很短,由此我们可以不考虑重力对碰撞本身的影响,因为在碰撞的时间t里,每一个兄弟和重力相关的冲量矩(对翘板中心计算)与t成正比,是非常小的碰撞时翘板支点是不动的,我们可以采用角动量守恒定律来研究又由于翘板非常轻,我们可以认为翘板的转动惯量为零。根据题中后面的说明和上面的假设我们可以认为碰撞时机械能是守恒的,也就是说是弹性碰撞。令表示第一个兄弟碰撞后的速度。与图5一17上的指向同一个方向。由系统的角动量和机械能守恒,可以写出解这个方程组,我们得到两组解1),2),第一组解相当于碰撞之前;而第二组解相当于碰撞之后。第二个兄弟跳到相邻的翘板上,在碰撞的瞬间速度是。相继而来的过程和第一次完全相似。因此以后的弟兄们弹起的速度相应地为,将前面的计算结果代人,可得第五个兄弟弹起的速度为所求的高度h5可以利用下式计算,于是得到把题中数据代入得:。7解:在板加上甲虫的系统上没有任何对转动轴的外力矩作用,因此该系统对过板中心的竖直轴的角动量守恒用r表示甲虫离板中心的末距离系统对板中心轴的初始转动惯量为,而末了转动惯量为由角动量守恒定律有 所有甲虫一起所做的功等于系统在末了和开始的动能之差(即转动能之差): 将式代入式,得于是将题中所给的数值代入后,得8解:如果小球的水平速度比较大,它与平板的第一次碰撞正好发生在平板的边缘Q处,这时的值便是满足题中条件的最大值;如果小球的水平速度较小,在它与平板发生第一次碰撞后再次接近平板时,刚好从平板的边缘Q处越过而不与平板接触,这时的值便是满 足题中条件的最小值设小球从台面水平抛出到与平板发生第一次碰撞经历的时间为,有hPQBu0 (1)若碰撞正好发生在Q处,则有(2)从(1)、(2)两式解得的值便是满足题中条件的最 大值,即(3) 代入有关数据得(4)如果,小球与平板的碰撞处将不在Q点设小球第一次刚要与平板碰撞时在竖直方向的速度为,则有(5)以、分别表示碰撞结束时刻小球和平板沿竖直方向的速度,由于碰撞时间极短,在碰撞过程中,小球和平板在竖直方向的动量守恒设小球和平板的质量都是m,则有(6)因为碰撞是弹性的,且平板是光滑的,由能量守恒可得(7)解(6)、(7)两式,得(8)(9)碰撞后,平板从其平衡位置以为初速度开始作简谐振动取固定坐标,其原点O与平板处于平衡位置时板的上表面中点重合,x轴的方向竖直向下,若以小球和平板发生碰撞的时 刻作为,则平板在t时刻离开平衡位置的位移(10)式中(11)A和是两个待定的常量,利用参考圆方法,在t时刻平板振动的速度(12)因时,由(9)、(11)、(12)式可求得(13)(14)把(13)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 运动伤害与防护策略
- 社群创业直播咨询方案
- 工厂安全培训教室内容课件
- 外阴白斑与DNA损伤修复-洞察及研究
- 游戏开发团队协作激励机制探讨-洞察及研究
- 华城管理制度
- 跨境安全协同机制-洞察及研究
- 高频电源散热研究-洞察及研究
- 湖北省荆州市沙市中学2025-2026学年高一上学期9月月考语文试卷(含答案)
- 机械厂财务管理制度
- 2025年合肥公交集团有限公司驾驶员招聘180人笔试参考题库附带答案详解
- GB/T 46104-2025电解水制氢系统功率波动适应性测试方法
- 信贷档案管理培训课件
- 2025年网络安全监测预警体系建设实施方案评估报告
- 2025年会计继续教育网络答题真题及答案
- (2025)安全知识竞赛试题(附完整答案)
- 2025年辅警招聘考试(行政职业能力测验)复习题及答案
- 2025年海南事业单位联考笔试历年典型考题及考点剖析附带答案详解
- 2025年水发集团有限公司招聘(216人)备考练习试题及答案解析
- 试验检测资金管理办法
- 护理时政面试题库及答案
评论
0/150
提交评论