




已阅读5页,还剩69页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章物流系统综合评价 1 系统综合评价概述2 物流系统评价指标体系3 物流系统的单项评价方法4 评价指标综合法5 模糊综合评价 第一节系统综合评价概述 一 系统综合评价的概念所谓系统综合评价就是根据系统确定的目的 在系统调查和系统可行性研究的基础上 主要从技术 经济 环境和社会等方面 就各种系统设计方案能够满足需要的程度与为之消耗和占用的各种资源 进行评审 并选择出技术上先进 经济上合理 实施上可行的最优或最满意的方案 二 系统综合评价的步骤 物流系统综合评价的一般步骤 第二节物流系统评价的指标体系 一 系统评价指标指标是衡量系统总体目标的具体标志 在系统评价时通常采用多种尺度进行相互比较 这种尺度就是评价指标 一般来说 系统目的 目标是多层次的 相应地 用于评价这种目的 目标的指标也不只一个 也应该是具有层次结构的一个体系 这就是系统的评价指标体系 二 物流系统评价的指标体系构成 1 政策性指标2 技术性指标3 经济性指标4 社会性指标5 资源性指标6 时间性指标 第三节物流系统的单项评价方法 一 经济评价的成本效益法所谓成本效益法 CostBenefitAnalysis 就是把不同系统方案的成本和效率进行比较分析的方法 成本反映的是建立新系统或改进系统所需要的主要投资耗费 效益则是反映新建的或改建的系统所能产生的经济效益和社会效益 成本效益法思路 将系统评价中的所有指标都归结为效益指标或成本指标 效益是实现系统方案后能获得的结果 成本是为了实现系统方案必须支付的投资 将每个方案的效益与成本分别计算后 再比较其效益 成本 就可以评价方案的优劣 效益 成本愈大 方案愈好 1 成本模型成本模型应能说明方案的特性参数与其成本之间的关系 一般的成本模型为 式中 C为方案的成本 X为特性参数 F为函数形式 成本效益模型 2 效益模型一般效益模型可表示为 式中 E为系统方案的效益 G为函数形式 3 综合模型主要研究成本与效益的关系 可以从三个方面讨论 1 在一定成本下 哪个方案的效益最高 C准则 2 在一定效益下 哪个方案的成本最低 E准则 3 计算效益成本比 E C 评价那个方案的比值最大 投入不同的成本会得到不同的效益 将其对应结果绘成 成本效益曲线 再根据以上准则作出评价 成本效益综合模型图 例10 1 某企业准备投资新建一个配送中心 经过初步调查研究提出了三个方案 各方案主要指标如下表所示 请用效益成本法对三个方案进行评价 实例 配送中心方案指标比较 配送中心各方案投资利润比较 从上表可以看出 方案 是最理想的 第四节评价指标综合法 一 成本 有效度分析法物流系统一般都具有明显的社会效益 不能仅从经济方面来评价 还应该采用很多社会性指标来评价 这些指标体现的是物流系统方案的价值 可通过某种效用函数将它们转换为用 0 1 区间的实数来描述 这样就能使得不同的指标值能进行合乎逻辑的综合 成本 有效度分析法的一般步骤 1 明确系统要实现的效用目标 2 确定反映系统有效度的评价指标 3 提出具有预定效用的备选方案 4 采用成本固定法或效用固定法筛选系统方案 例10 2 某城市为改善交通秩序 提高车辆的通行效率 拟建新的交通自动信号控制系统 系统以可靠度作为有效度指标 可靠度用预定期限和条件下系统不发生失误的概率来表示 已知该系统的投资与运行费用共限额为24万元 效用水平要求不低于97 被选方案有4个 有关数据如下表所示 试用成本 有效度分析法进行系统方案选择 实例 系统方案指标比较 解 根据表中的已知数据作出表示系统方案的成本 有效度关系图 见下图 通过比较 应该优先选择方案 二 层次分析法 层次分析法 AnalyticHierarchyProcess 简称AHP 是美国运筹学家T L Saaty教授于上世纪80年代初期提出的一种简便 灵活而又实用的多准则决策方法 AHP 一种定性与定量相结合的 系统化 层次化的分析方法 可以解决日常工作 生活中的决策问题 大学毕业生就业选择问题 获得大学毕业学位的毕业生 在 双向选择 时 用人单位与毕业生都有各自的选择标准和要求 就毕业生来说选择单位的标准和要求是多方面的 例如 能发挥自己才干作出较好贡献 即工作岗位适合发挥自己的专长 工作收入较好 待遇好 生活环境好 大城市 气候等工作条件等 单位名声好 声誉等 工作环境好 人际关系和谐等 发展晋升机会多 如新单位或前景好 等 旅游景点的选择 假期旅游有3个旅游胜地供你选择 你怎样根据诸如景色 费用 居住 饮食和旅途条件等因素 确定一个最佳的旅游地点 领导干部选拔 某单位拟从3名干部中选拔一名领导 选拔的标准有政策水平 工作作风 业务知识 口才 写作能力和健康状况 如何对3人综合评估 量化排序 某研究所现有三个科研课题 限于人力及物力 只能研究一个课题 有三个须考虑的因素 1 科研成果贡献大小 包括实用价值和科学意义 2 人材的培养 3 课题的可行性 包括课题的难易程度 研究周期及资金 在这些因素的影响下 如何选择课题 科研课题的选择 一 层次分析法的基本原理 假设有n个物品 其真实重量用表示 将几个物品两两比较 得到它们的重量比矩阵A 由上式可知 n是A的特征值 W是A的特征向量 可以利用求物品重量比判断矩阵的特征向量的方法来求得物品真实重量向量W 从而确定最重的物品 用物品重量向量右乘矩阵A 则有 将上述n个物品代表n个指标 要素 物品的重量向量就表示各指标 要素 的相对重要性向量 即权重向量 可以通过两两因素的比较 建立判断矩阵 再求出其特征向量就可确定哪个因素最重要 依此类推 如果n个物品代表n个方案 按照这种方法 就可以确定哪个方案最有价值 AHP法的主要步骤 1 建立层次结构模型 2 对同一级要素以上一级要素为准则进行两两比较 建立判断矩阵A 3 计算判断矩阵的特征向量 并对判断矩阵的一致性进行检验 4 一致性检验通过后 确定各层排序加权值 若检验不能通过 需要重新调整判断矩阵 5 计算综合重要度 对各方案进行排序 从而为决策提供依据 二 多级递阶的层次结构 用层次分析法进行系统分析 首先要把问题层次化 根据问题的性质和想要达到的总目标 将问题分解为不同的组成因素 并按照因素间的相互关联影响以及隶属关系 将因素按不同层次聚集组合 形成一个多层次的分析结构模型 一个典型的层次可以用下图表示出来 工作选择 可供选择的单位P1 P2 Pn 目标层 准则层 方案层 大学毕业生就业选择问题 目标层 O 选择旅游地 准则层 方案层 选择旅游景点 科研课题选择 目标层 选一领导干部 准则层 方案层 领导干部选拔 三 判断矩阵 判断矩阵A中元素表示要素i与要素j相对重要度之比 且有下述关系 显然 比值越大 则要素i的重要度就越高 为了便于将比较判断定量化 引人1 9标度方法 规定用1 3 5 7 9分别表示根据经验判断 要素i与要素j相比 同等重要 比较重要 重要 很重要 极重要 而2 4 6 8表示上述两判断级之间的折中值 标度 第个要素与第个要素同等重要 第个要素与第个要素相比比较重要 第个要素与第个要素相比重要 第个要素与第个要素相比很重要 第个要素与第个要素相比极重要 含义 1 9标度的含义 2 4 6 8表示第个因素相对于第个因素的影响介于上述两个相邻等级之间 例 某配送中心的设计中要对某类物流装备进行决策 现初步选定三种设备配套方案 应用层次分析法对优先考虑的方案进行排序 1 建立层次结构模型 实例 2 构造两两判断矩阵 即重要矩阵为 四 相对重要程度 即权重 的计算 实践中可以采用求和法或求根法计算特征值的近似值 1 求和法 将判断矩阵A按列归一化 即列元素之和为1 按行求和 归一化 所得即为A的特征向量的近似值 2 求根法 将判断矩阵A按行求积 计算n次方根 归一化 求和法 求根法 对上例中的矩阵A分别用求和法 求根法计算的权重向量如下 五 层次单排序和一致性检验 求得的W的元素为同一层次因素对于上一层次因素某因素相对重要性的排序权值 这一过程称为层次单排序 能否确认层次单排序 需要进行一致性检验 所谓一致性检验是指对A确定不一致的允许范围 定理 n阶一致阵的唯一非零特征根为n 由于 连续的依赖于aij 则 比n大的越多 A的不一致性越严重 用最大特征值对应的特征向量作为被比较因素对上层某因素影响程度的权向量 其不一致程度越大 引起的判断误差越大 因而可以用 n数值的大小来衡量A的不一致程度 定义一致性指标 n较大时 可以使用随机一致性比值CR CI RI进行一致性检验 其中平均随机一致性指标RI 见下表 CI 0 有完全的一致性CI接近于0 有满意的一致性CI越大 不一致越严重 上例中 n 3 CI 0 1 可以认为判断矩阵A具有一致性 也可以进一步查随机一致性表得 n 3时 RI 0 52 计算CR 0 0185 0 52 0 036 0 1 故判断矩阵A具有一致性 六 综合重要度计算 设c级共有m个要素 它们对总值的重要度为 它的下一层次p级有共n个要素 令要素对的重要度为 则p级要素的综合重要度为 依据各方案综合重要度的大小 可对方案进行排序 决策 获得同一层次各要素之间的相对重要度之后 就可以自上而下地计算各级要素相对总体的综合重要度 综合重要度 层次总排序 计算某一层次所有因素对于最高层 总目标 相对重要性的权值 称为层次总排序 这一过程是从最高层次到最低层次依次进行的 对总目标Z的重要度排序为 的层次单排序为 即P层第i个因素对总目标的权值为 层的层次总排序为 C P 上例中 通过对三个方案的功能 价格 维护性进行分析和比较 可建立方案层的判断矩阵 因为这一层有三个准则 故有三个判断矩阵 然后 按照求根法 可计算出各方案在不同准则下的重要度排序 将重要度值列入相应表中的最后一列 方案层的判断矩阵1 方案层的判断矩阵2 方案层的判断矩阵3 各方案的综合重要度 方案1的重要度W1 0 637 0 0719 0 105 0 5400 0 258 0 6483 0 2698方案2的重要度W2 0 637 0 6491 0 105 0 2970 0 258 0 1220 0 4761方案3的重要度W3 0 637 0 2790 0 105 0 1633 0 258 0 2297 0 2541根据综合重要度的比较 该配送中心的设备配置问题选择方案B2更为理想 补充实例 大学毕业生工作选择 经双方恳谈 已有三个单位表示愿意录用某毕业生 该生根据已有信息建立了一个层次结构模型 如下图所示 经过仔细斟酌 该毕业生对6个准则层的因素进行了两两比较 得出相应的判断矩阵为 相应的特征向量为 A的最大特征值 一致性指标 随机一致性指标RI 1 24 查表 一致性比率CR 0 07 1 24 0 0565 0 1 矩阵A通过一致性检验 假设3个工作单位关于6个准则的判断矩阵分别为 研究课题 发展前途 工作待遇 同事情况 地理位置 单位名气 计算以上各判断矩阵的特征值 特征向量 一致性指标如下 各判断矩阵均通过一致性检验 计算层次总排序或综合重要度 根据综合重要度的比较 该毕业生应选择工作1 第五节模糊综合评价 模糊综合评价是利用模糊集理论进行综合评价的一种方法 对方案 人才 成果的评价 人们考虑的因素很多 而且有些描述很难给出确切的表达 这时可根据他们的判断对复杂问题做出诸如 大 中 小 优 良 中 差 很好 好 一般 差 等程度的模糊评价 设为一基本集 若对每个都指定一个数则定义模糊子集 一 基本概念 一 模糊集合 称为的隶属函数 称为元素的 隶属度 注 不是分式求和 只是一种表示方法 例如 a b c d4人属于高个子的程度分别为0 8 0 5 0 6 0 2 则该模糊子集合可表示成 通常简写为模糊向量 0 8 0 5 0 6 0 2 归一化后的模糊向量 0 38 0 24 0 29 0 09 按照最大隶属度原则 a属于高个子 例如 a 0 8 0 5 0 3 0 7 b 0 4 0 7 0 5 0 2 则a b 或a b 或a b 0 8 0 4 0 5 0 7 0 3 0 5 0 7 0 2 0 4 0 5 0 3 0 2 0 5 二 模糊合成运算 即模糊关系的合成运算 其模糊合成算子为 模糊合成运算是一种模糊映射过程 应采用模糊关系的合成方法计算 其方法如下 设B A R为模糊关系的合成运算 A与R为矩阵或向量 其算法与一般矩阵 向量乘法规则相同 但要将计算式中的普通乘法运算换为取最小的运算 记为 将计算式中的普通加法运算换为取最大运算 记为 二 模糊综合评价的基本步骤 模糊综合评价的应用 例10 4某成套设备公司准备推出一套新的分拣系统 为此 该公司领导希望了解市场对该系统的欢迎程度 即希望对该系统的市场欢迎程度进行评价 解 1 确定评价因素集U U 易维修 功能 自动化程度 价格 燃料耗费度 2 确定评价结果集 即评语集 V V 很受欢迎 受欢迎 一般 不受欢迎 3 确定各评价因素的权重 因为不同的需要对象 对 易维修 功能 自动化程度 价格 等因素的重要程度的看法不一样 就会得出不同的权重集 模糊子集 例如 大公司 0 35 0 35 0 1 0 1 0 1 小公司 0 1 0 1 0 15 0 3 0 35 市场专家 0 2 0 3 0 1 0 15 0 25 如果我们只考虑大 小公司的意见 由他们的权重模糊子集就构成一个模糊矩阵A 即 4 进行单因素评价 建立模糊关系矩阵R 利用 专家意见法 对 易维修性 这一指标进行评价 其模糊隶属度为 即 同样的方法可得到其余四个指标的隶属度 由此可得单因素评价矩阵R 即模糊关系矩阵或隶属度矩阵 5 进行综合评价 将各因素的权重与单因素评价矩阵进行模糊合成运算 得到模糊综合评价结果B 将B进行归一化处理 得 综合评价结果 大公司认为该系统受欢迎或一般 而小公司认为很受欢迎 如果按市场专家的意见进行综合评价 将B进行归一化处理 得 综合评价结果 市场专家认为该分拣系统受欢迎或一般 补充应用实例 某一物流企业需要购买供应链管理软件 该类供应链管理软件技术有三个主要供应商 有关情况如下表所示 三个供应商所提供软件的有关情况表 现在要从中选出优秀的软件技术供应商作为采购的对象 解 1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 鱼跃制氧机基础知识培训课件
- 鱼我所欲情景式默写课件
- 济南市2024-2025学年九年级下学期语文期中模拟试卷
- 高铁司机培训课件
- 2025年度财务人员工作自查报告
- 电路原理课程学习
- 高速铁路车站课件
- 高速边坡基础知识培训课件
- 文库发布:电解池课件
- 高质量饮水安全知识培训课件
- 孟良崮战役课件
- 幼儿园物资采购应急预案(3篇)
- 党群服务面试题目及答案
- 卫生院医疗质量管理方案
- 2025-2026秋季学年第一学期【英语】教研组工作计划:一路求索不停歇研思共进踏新程
- 2025年山东省济南中考数学试卷及标准答案
- 叉车考试模拟试题及答案完整版
- 2025-2026学年人教版(2024)初中数学七年级上册教学计划及进度表
- 第1课 鸦片战争 课件 历史统编版2024八年级上册
- 2025年安徽省中考历史试卷真题(含答案)
- 部编人教版五年级上册语文阅读理解专项试卷及答案
评论
0/150
提交评论