




已阅读5页,还剩17页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
RFID技术简介RFID技术前期发展 (1)人们对电磁能的认识 追溯历史,公元前中国先民即发现并开始利用天然磁石,并用磁石制成指南车。到了近世,越来越多的人对电、磁、光进行深入的观察及数学基础研究,其中的佼佼者是美国人本杰明.富兰克林。1846年英国科学家米歇尔.法拉弟发现了光波与电波均属于电磁能量。1864年苏格兰科学家詹姆士.克拉克.麦克斯韦尔发表了他的电磁场理论。1887年,德国科学家亨瑞士.鲁道夫.赫兹证实了麦克斯韦尔的电磁场理论并演示了电磁波以光速传播并可以被反射,具有类似光的极化特性,赫兹的实验不久也被俄国科学家亚力山大.波普重复。1896年马克尼成功地实现了横越大西洋的越洋电报,由此开创了利用电磁能量为人类服务的先河。更进一步,在1922年,诞生了雷达(Radar)。作为一种识别敌方空间飞行物(飞机)的有效兵器,雷达在第二次世界大战中发挥了重要的作用,同时雷达技术也得了极大的发展。至今,雷达技术还在不断发展,人们正在研制各种用途的高性能雷达。 (2)RFID技术的发展 RFID直接继承了雷达的概念,并由此发展出一种生机勃勃的AIDC新技术RFID技术。1948年哈里.斯托克曼发表的“利用反射功率的通讯”奠定了射频识别RFID的理论基础。 1)RFID技术发展的历程表。在20世纪中,无线电技术的理论与应用研究是科学技术发展最重要的成就之一。RFID技术的发展可按10年期划分如下: 19411950年。雷达的改进和应用催生了RFID技术,1948年奠定了RFID技术的理论基础。 19511960年。早期RFID技术的探索阶段,主要处于实验室实验研究。 19611970年。RFID技术的理论得到了发展,开始了一些应用尝试。 19711980年。RFID技术与产品研发处于一个大发展时期,各种RFID技术测试得到加速。出现了一些最早的RFID应用。 19811990年。RFID技术及产品进入商业应用阶段,各种规模应用开始出现。 19912000年。RFID技术标准化问题日趋得到重视,RFID产品得到广泛采用,RFID产品逐渐成为人们生活中的一部分。 2001今。标准化问题日趋为人们所重视,RFID产品种类更加丰富,有源电子标签、无源电子标签及半无源电子标签均得到发展,电子标签成本不断降低,规模应用行业扩大。 RFID技术的理论得到丰富和完善。单芯片电子标签、多电子标签识读、无线可读可写、无源电子标签的远距离识别、适应高速移动物体的RFID正在成为现实。2)RFID技术国内外发展状况。 RFID技术在国外的发展较早也较快。尤其是在美国、英国、德国、瑞典、瑞士、日本、南非目前均有较为成熟且先进的RFID系统。 其中,低频近距离RFID系统主要集中在125kHz、1356MHz系统;高频远距离RFID 系统主要集中在UHF频段(902MHz928MHz)915MHz、245GHz、58GHz。UHF频段的远距离RFID系统在北美得到了很好的发展;欧洲的应用则以有源245GHz系统得到了较多的应用。58GHz系统在日本和欧洲均有较为成熟的有源RFID系统。 在RFID技术发展的前10年中,有关RFID技术的国际标准的研讨空前热烈,国际标 准化组织ISOIEC联合技术委员会JTCl下的SC31下级委员会成立了RFID标准化研究 工作组WG4。尤其是在1999年10月1日正式成立的,由美国麻省理工学院MIT发起的 AutoID Center非盈利性组织在规范RFID应用方面所发挥的作用将越来越明显。Auto ID Center在对RFID理论、技术及应用研究的基础上,所作出的主要贡献如下: a.提出产品电子代码EPC(Electronic Product Code)概念及其格式规划。为减化电子标签芯片功能设计,降低电子标签成本,扩大RFID应用领域奠定了基础。 b.提出了实物互联网的概念及构架,为EPC进入互联网搭建了桥梁。 c.建立了开放性的国际自动识别技术应用公用技术研究平台,为推动低成本的RFID标签和读写器的标准化研究开创了条件。RFID系统组成(1)阅读器(Reader):读取(有时还可以写入)标签信息的设备,可分为手持式或固定(2)天线(Antenna):在标签和读取器间传递射频信号。(3)电子标签(Tag):一般保存有约定格式的电子数据,在实际应用中,电子标签附着在待识别物体的表面。读器可无接触地读取并识别电子标签中所保存的电子数据,从而达到自动识别体的目的。通常阅读器与电脑相连,所读取的标签信息被传送到电脑上进行下一步处理。在以上基本配置之外,还应包括相应的应用软件。 RFID标签分为被动标签(Passive tags)和主动标签(Active tags)两种。主动标签自身带有电池供电,读/写距离较远时体积较大,与被动标签相比成本更高,也称为有源标签, 一般具有较远的阅读距离,不足之处是电池不能长久使用,能量耗尽后需更换电池。无源电子标签在接收到阅读器(读出装置)发出的微波信号后,将部分微波能量转化为直流电供自己工作,一般可做到免维护,成本很低并具有很长的使用寿命,比主动标签更小也更轻,读写距离则较近,也称为无源标签。相比有源系统,无源系统在阅读距离及适应物体运动速度方面略有限制。按照存储的信息是否被改写,标签也被分为只读式标签(read only)和可读写标签(read and write) 只读式标签内的信息在集成电路生产时即将信息写入,以后不能修改,只能被专门设备读取;可读写标签将保存的信息写入其内部的存贮区,需要改写时也可以采用专门的编程或写入设备擦写。一般将信息写入电子标签所花费的时间远大于读取电子标签信息所花费的时间,写入所花费的时间为秒级,阅读花费的时间为毫秒级。电子标签由耦合元件及芯片组成,每个标签具有唯一的电子编码,附着在物体上标识目标对象;每个标签都有一个全球唯一的ID号码UID,UID是在制作芯片时放在ROM中的,无法修改。用户数据区(DATA)是供用户存放数据的,可以进行读写、覆盖、增加的操作。读写器对标签的操作有三类:识别(Identify):读取UID;读取(Read):读取用户数据;写入(Write):写入用户数据RFID系统的工作原理RFID系统在实际应用中,电子标签附着在待识别物体的表面,电子标签中保存有约定格式的电子数据。阅读器可无接触地读取并识别电子标签中所保存的电子数据,从而达到自动识别物体的目的。阅读器通过天线发送出一定频率的射频信号,当标签进入磁场时产生感应电流从而获得能量,发送出自身编码等信息,被读取器读取并解码后送至电脑主机进行有关处理。RFID系统的工作频率通常阅读器发送时所使用的频率被称为RFID系统的工作频率。常见的工作频率有低频125kHz、134.2kHz及13.56MHz等等。低频系统一般指其工作频率小于30MHz,典型的工作频率有:125KHz、225KHz、13.56M等,这些频点应用的射频识别系统一般都有相应的国际标准予以支持。其基本特点是电子标签的成本较低、标签内保存的数据量较少、阅读距离较短、电子标签外形多样(卡状、环状、钮扣状、笔状)、阅读天线方向性不强等。高频系统一般指其工作频率大于400MHz, 典型的工作频段有:915MHz、2.45GHz、5.8GHz等。高频系统在这些频段上也有众多的国际标准予以支持。高频系统的基本特点是电子标签及阅读器成本均较高、标签内保存的数据量较大、阅读距离较远(可达几米至十几米), 适应物体高速运动性能好,外形一般为卡状,阅读天线及电子标签天线均有较强的方向性。 RFID技术特点及优势RFID是一项易于操控,简单实用且特别适合用于自动化控制的灵活性应用技术,识别工作无须人工干预,它既可支持只读工作模式也可支持读写工作模式,且无需接触或瞄准;可自由工作在各种恶劣环境下:短距离射频产品不怕油渍、灰尘污染等恶劣的环境,可以替代条码,例如用在工厂的流水线上跟踪物体;长距射频产品多用于交通上,识别距离可达几十米,如自动收费或识别车辆身份等。其所具备的独特优越性是其它识别技术无法企及的。主要有以下几个方面特点:读取方便快捷:数据的读取无需光源,甚至可以透过外包装来进行。有效识别距离更大,采用自带电池的主动标签时,有效识别距离可达到30米以上;识别速度快:标签一进入磁场,解读器就可以即时读取其中的信息,而且能够同时处理多个标签,实现批量识别;数据容量大:数据容量最大的二维条形码(PDF417),最多也只能存储2725个数字;若包含字母,存储量则会更少;RFID标签则可以根据用户的需要扩充到数十K;使用寿命长,应用范围广:其无线电通信方式,使其可以应用于粉尘、油污等高污染环境和放射性环境,而且其封闭式包装使得其寿命大大超过印刷的条形码;标签数据可动态更改:利用编程器可以向写入数据,从而赋予RFID标签交互式便携数据文件的功能,而且写入时间相比打印条形码更少;更好的安全性:不仅可以嵌入或附着在不同形状、类型的产品上,而且可以为标签数据的读写设置密码保护,从而具有更高的安全性;动态实时通信:标签以与每秒50100次的频率与解读器进行通信,所以只要RFID标签所附着的物体出现在解读器的有效识别范围内,就可以对其位置进行动态的追踪和监控RFID射频识别技术对比条形码的7大特点1.快速扫描 条形码一次只能有一个条形码受到扫描;RFID辨识器可同时辨识读取数个RFID标签。 2.体积小型化、形状多样化 RFID在读取上并不受尺寸大小与形状限制,不需为了读取精确度而配合纸张的固定尺寸和印刷品质。此外,RFID标签更可往小型化与多样形态发展,以应用于不同产品。 3.抗污染能力和耐久性 传统条形码的载体是纸张,因此容易受到污染,但RFID对水、油和化学药品等物质具有很强抵抗性。此外,由于条形码是附于塑料袋或外包装纸箱上,所以特别容易受到折损;RFID卷标是将数据存在芯片中,因此可以免受污损。 4.可重复使用 现今的条形码印刷上去之后就无法更改,RFID标签则可以重复地新增、修改、删除RFID卷标内储存的数据,方便信息的更新。 5.穿透性和无屏障阅读 在被覆盖的情况下,RFID能够穿透纸张、木材和塑料等非金属或非透明的材质,并能够进行穿透性通信。而条形码扫描机必须在近距离而且没有物体阻挡的情况下,才可以辨读条形码。 6.数据的记忆容量大 一维条形码的容量是50Bytes,二维条形码最大的容量可储存2至3000字符,RFID最大的容量则有数MegaBytes。随着记忆载体的发展,数据容量也有不断扩大的趋势。未来物品所需携带的资料量会越来越大,对卷标所能扩充容量的需求也相应增加。 7.安全性 由于RFID承载的是电子式信息,其数据内容可经由密码保护,使其内容不易被伪造及变造。 近年来,RFID因其所具备的远距离读取、高储存量等特性而备受瞩目。它不仅可以帮助一个企业大幅提高货物、信息管理的效率,还可以让销售企业和制造企业互联,从而更加准确地接收反馈信息,控制需求信息,优化整个供应链RFID卡与接触式IC卡射频卡(简称RF卡)是一种以无线方式传送数据的集成电路卡片,它具有数据处理及安全认证功能等特有的优点。 RF卡在读写时是处于非接触操作状态,避免了由于接触不良所造成的读写错误等误操作,同时避免了灰尘、油污等外部恶劣环境对读写卡的影响。 操作简单、快捷RF卡采取无线通迅方式,使用时无方向要求,所以使用起来十分方便。 防冲突RF卡中存有快速防冲突机制,能防止卡片之间出现数据干扰,因此终端可以同时处理多张卡片。 便于一卡多用:RF卡中有多个分区,每个分区又各自有自己的密码,所以可以将不同的分区用于不同的应用,实现一卡多用。 与接触式IC卡相比较,射频卡具有以下优点: 可靠性高卡与读写器之间无机械接触,避免了由于接触读写而产生的各种故障。例如:由于粗暴插卡、非卡外物插入、灰尘、油污导致接触不良等原因造成的故障,卡表面无裸露的芯片,无须担心芯片脱落、静电击穿,弯曲损坏等问题; 操作方便、快捷由于非接触通讯,读写器在1cm-10cm范围内就可以对卡片操作,所以不必象IC卡那样进行插拔工作;非接触卡使用时没有方向性,卡片可以任意方向掠过读写器表面,可大大提高每次使用的速度; 防冲突射频卡中有快速防冲突机制,能防止卡片之间出现数据干扰,因此读写器可以同时处理多张非接触式射频卡; 应用范围广射频卡的存储器结构特点使它一卡多用;可应用于不同的系统,用户根据不同的应用设定不同的密码和访问条件; 加密性能好射频卡的序列号是唯一的,制造厂家在产品出厂前已将此序列号固化,不可再更改; 射频卡与读写器之间采用双向验证机制,即读写器验证射频卡的合法性,同时射频卡也验证读写器的合法性;处理前,卡要与读写器进行三次相互认证,而且在通讯过程中所有的数据都加密。此外,卡中各个扇区都有自己的操作密码和访问条件。RFID后续发展及应用领域 RFID后续发展 射频识别技术的发展,一方面受到应用需求的驱动,另一方面射频识别技术的成功应用反过来又将极大地促进应用需求的扩展。从技术角度说,射频识别技术的发展体现在若干关键技术的突破。从应用角度来说,射频识别技术的发展目的在于不断满足日益增涨的应用需求 。 射频识别技术的发展得益于多项技术的综合发展。所涉及的关键技术大致包括:芯片技术、天线技术、无线收发技术、数据变换与编码技术、电磁传播特性。 随着技术的不断进步,射频识别产品的种类将越来越丰富,应用也越来越广泛。可以预计,在未来的几年中,射频识别技术将持续保持高速发展的势头。射频识别技术的发展将会在电子标签(射频标签)、阅读器、系统种类等方面取得新进展。 在电子标签方面,电子标签芯片所需的功耗更低,无源标签、半无源标签技术更趋成熟。其作用距离将更远,无线可读写性能也将更加完善,并且能够适合高速移动物品识别,识别速度也将更加快,具有快速多标签读写功能。与此同时,在强场强下的自保护功能也会更加完善、智能性更强,成本更低。在读写器方面,多功能读写器,包括与条码识别集成、无线数据传输、脱机工作等功能将被更多的应用。同时,多种数据接口包括RS232,RS422485,USB,红外,以太网口也将得到应用。而读写器将实现多制式多频段兼容,能够兼容读写多种标签类型和多个频段标签。读写器会朝着小型化、便携式、嵌入式、模块化方向发展,成本将更加低廉,应用范围更加广泛。在系统方面,低频近距离系统将具有更高的智能、安全特性;高频远距离系统性能将更加完善,成本更低。而2.45GHz和5.8GHz系统将更加完善。同时,无芯片系统将逐渐得到应用。 在通常情况下,RFID芯片是非常不易被伪造的。黑客需要对无线工程、编码演算以及解密技术等各方面有深入知识。此外,在标签上可以对数据采取分级保密措施,使得数据在供应链上的某些点可以读取,而在其它点却不行。一些RFID标准规定了额外的安全措施。由于具备这些先天的安全性,美国食品药品监督管理局(FDA)已经提倡使用RFID作为药品防伪的手段之一。标准的EPC标签具有防篡改的安全保护,标准通讯协议中包含了数据加密,以及要求在数据传输之前,标签和读写器之间要建立安全连接,这就使得篡改EPC代码非常困难。失效(杀死)标签,从而使其中的数据永远无法再被读到,是零售和快速消费品行业为保护顾客隐私而提出的需求,所以标准支持这个功能。这也就提出了认证的需要,以防止标签被未经授权地或者意外地失效。扩展的安全方面的需求取决于标签如何被使用,因此对读写设备特点的要求超过了只读取标准标签的底线。另外,可利用多种方式来实现与标准Gen2产品不同的安全性扩展,“外壳”功能使标签只能与被授权的读写器通讯。在标签回应通讯请求之前,读写器必须提供密码,同样,写入数据或者将标签失效也需要密码 总而言之,射频识别技术未来的发展中,在结合其它高新技术,比如GPS、生物识别等技术,由单一识别向多功能识别方向发展的同时,将结合现代通信及计算机技术,实现跨地区、跨行业应用。 应用领域分析射频识别技术以其独特的优势,逐渐的被广泛应用于工业自动化、商业自动化和交通运输控制管理等领域。随着大规模集成电路技术的进步以及生产规模的不断扩大,射频识别产品的成本将不断的降低,其应用将越来越广泛。表一列举了射频识别技术几个典型的应用。 表一:射频识别技术典型应用对比典型应用领域具体应用车辆自动识别管理铁路车号自动识别是射频识别技术最普遍的应用。高速公路收费及智能交通系统高速公路自动收费系统是射频识别技术最成功的应用之一,它充分体现了非接触识别的优势。在车辆高速通过收费站的同时完成缴费,解决了交通的瓶颈问题,提高了车行速度,避免拥堵,提高了收费结算效率。 货物的跟踪、管理及监控射频识别技术为货物的跟踪、管理及监控提供了快捷、准确、自动化的手段。以射频识别技术为核心的集装箱自动识别,成为全球范围最大的货物跟踪管理应用。 仓储、配送等物流环节 射频识别技术目前在仓储、配送等物流环节已有许多成功的应用。随着射频识别技术在开放的物流环节统一标准的研究开发,物流业将成为射频识别技术最大的受益行业。 电子钱包、电子票证射频识别卡是射频识别技术的一个主要应用。射频识别卡的功能相当于电子钱包,实现非现金结算。目前主要的应用在交通方面。 生产线产品加工过程自动控制主要应用在大型工厂的自动化流水作业线上,实现自动控制、监视,提高生产效率,节约成本。 动物跟踪和管理射频识别技术可用于动物跟踪。在大型养殖厂,可通过采用射频识别技术建立饲养档案、预防接种档案等,达到高效、自动化管理牲畜的目的,同时为食品安全提供了保障。射频识别技术还可用于信鸽比赛、赛马识别等,以准确测定到达时间。 RFID 门 仓库入口处的读取器根据每一单元内置的智能芯片记录自动识别和登记通过的每个货盘,耗时的人工控制将成为历史,登录的数据可自动与货单核对以保持一致。 RFID 货架: 能识别货架上的货品是否缺货或被摆错位置,只需按键便能改变显示价格的电子标签,空货架将成为历史。 智能试衣间:虚拟试衣将成为可能:当身材尺寸被扫描后,顾客将在镜中看到自己身着所选服装的形象。同时,顾客可以把自己的数码形象通过手机传送给朋友以获得建议。 智能购物车: 车上配有读取器,可以读取附有智能芯片的商品。购物车的显示屏上显示所有顾客放入车中的商品,顾客因此总能掌握已购买商品的总金额。在结账时,顾客不再需要把购买的商品放到付款台的传送带上。 智能信息终端: 互动的顾客咨询师,信息终端为顾客提供全面的帮助,顾客可以直接在终端上打印出食谱及营养、居家建议。也能追踪食品商品的原产地,例如:用鸡蛋上的 KAT 代码 (德国用于检验家禽饲养的代码) 可以查到原产国、饲养类别等。 顾客通过触摸屏启动结账程序后,将商品进行扫描并装袋,使付账迅速方便,顾客不再需要长时间排队等待。 智能电子秤: 只需将水果或蔬菜放在智能电子秤上,它即可自动识别所放物品。RFID技术规格与软件支持RFID技术规格RFID技术分为三个层次,即支撑层、基础层和应用层。 支撑层技术主要是指RFID的芯片技术,包括标签芯片的设计工艺、加工工艺、封装工艺以及天线的印刷工艺,阅读器数字信号处理芯片的设计也不可忽视。应该说,支撑层技术实际上是RFID应用的原动力。 基础层技术主要是指不同场景下的应用环境构造,包括标签信息的写入读出、与对象捆绑,阅读器内部设计和嵌入式系统编程等。基础层技术也是RFID技术与市场应用的结合点和桥梁。 应用层技术主要是指后台软件对信息的进一步分析、判断与处理,包括了数据跟踪、数据挖掘和信息共享等内容,这也是RFID技术跃升为“物联网”的重要前提之一。由于可以对标签内的信息进行重新写入,因此RFID不再是一个静态的货物标识,它反映了货物与货主之间的互动作用,并且RFID的动态作用又使得RFID与企业和社会之间能够保持联系。从这个意义上讲,RFID代表了现代工业社会对生产、运输、销售到消费的全方位信息处理及服务过程。 为便于说明问题,我们以一个标签中储存的产品信息为线索,追踪一个信息流是如何在物流应用中起到作用的。在这里,我们实际上暂时抛开了支撑层硬件技术,而只是在基础层和应用层两个技术层次上进行探讨。当然,支撑层技术并非不重要,相反我们已经在诸如汽车、手机、DVD等行业尝到了苦头。但是从这个角度,我们便可以和国外的大公司大企业站在同一个高度上思考问题。 首先还是要有标准。标准定义了产品信息的编码规范,并为该件产品赋予一个排他的代码,这就是信息流的源泉。接着,这个代码被写入RFID标签中,并在未来反复被阅读器读出。如果阅读器没有与外部网络连接,那么信息流的传递到阅读器便告一段落,实现的是货品检查、简单销售等功能。更多情况下阅读器读出的信息流会传递到与之连接的互联网上,通过物联网的时空模型对其离散时空信息进行连续化,再以Web服务作为解决方案提供注册、搜寻、交换和使用该信息流的标准,并为产品-消费链提供高层信息的协同处理机制,实现物品跟踪、物流运输、资产管理、售后服务等功能。如果能够再进一步进行数据挖掘,还可以实现更加丰富的功能。在这个信息流传递的过程中,任何一个环节都需要标准,比如描述阅读器与标签之间的交互标准EPC Tag Data Standards,描述阅读器与互联网之间的交互标准PML Core Specification。 RFID技术的推广应用同样重要。我们需要选择那些应用广泛、具备较强实力、单件货品价格校高、个性化程度较高的行业,如烟草、集装箱码头、图书出版业、图书馆、家电制造业、海关行李托运等领域进行推广。至于应用的具体时间,大家的心里却都在打鼓。一方面有人认为RFID技术的行业级推广应用已经迫在眉睫,任何人都无法对它无动于衷;而另一种观点却又异常冷静,认为RFID技术的全面应用至少需要10年时间。Gartner甚至认为“RFID技术在短期内将不会达到人们对它的期望,RFID将经历不可避免的失望”。 尽管应用前景美好,但目前RFID的应用仍然面临着一些困难,其中的几个关键问题是成本、标准和技术。成本。RFID推广应用的“瓶颈”之一,就是电子标签的价格相对较高(相对条码标签而言)。有人开玩笑说,如果想要一家企业难堪,只要问它一个问题足矣,这就是成本。市场对于标签成本的追求总是没有尽头,从20美分到10美分,现在又到了5美分,也许还会更低。 对于不同功率以及不同性能的RFID系统,其读写距离不同,电子标签产品价位也大不相同。在我国,国产RFID公司生产的产品中,低频无源电子标签价格大约为2元人民币/张,中频无源电子标签价格大约为4元人民币/张,高频无源电子标签产品目前尚未出现。在国外企业中,TI公司的RFID产品的性能走在了同类产品的前列,它目前能够提供的远距离无源低频电子标签的最低售价为25美分左右(其最远读写距离能达到1米左右)。虽然有关公司声称,当RFID大规模应用后,电子标签价格能够降到5美分左右,但如果加上阅读器及后端软件系统,RFID系统的投入相对条形码系统要高得多。由此可以看出成本是影响RFID技术推广的重要因素之一,但我想它不是惟一因素。无论是国家政策导向还是企业自身发展都要意识到这一点,如果等到标签成本降到几分钱人民币的时候再投入,机会已经错过。标准。标准之争也就是利益之争,甚至可以说是国家利益之争。标准的确定不仅仅依赖于技术层面问题的解决,更依赖于各方面力量的协调。到目前为止,各个RFID企业所采用的大多是专有技术,所使用的频率、编码、存储规则,以及数据格式等都不尽相同。阅读器和标签不能通用,企业与企业之间就无法顺利进行数据交换与协同工作,从而把RFID技术的应用范围局限在了某个企业的内部。 要实现“物联网”的构想,就必须制定一个与互联网相类似的、详细的、统一规范而且开放的技术标准。国外几种标准之间的明争暗斗,也使得中国RFID国家标准工作组左右为难。美国使用915MHz,欧盟要求868MHz,而日本定为950MHz956MHz,中国标准则还是一个未知数。也许为了与国际兼容,我们还要考虑一个多频技术的问题。但是这势必又将提高芯片的成本,产生新的问题。正是因为国际上存在着这些不确定因素,所以中国国家标准迟迟无法揭开面纱,而EPC与RFID政策白皮书也仍在观望阶段。从某种角度上说,一部标准就是其所在领域内的宪法,具有最高的权威和法律效力。一方面,其他的法规和法律性文件,都必须以宪法为依据,不得与宪法相抵触;另一方面,宪法的原则精神也只有通过普通法律、法规的具体化才能有效实施。这就涉及到标准背后一个不为人所注意的环节,即对建立一套技术评测体系的需求。建立这样一套体系的意义有三:一是在于通过分析测试环境,对RFID技术进行详细的评测,同时收集现有RFID系统在各种不同应用环境下的基本数据及存在问题,并指明进一步技术攻关的方向;二是将分析测试环境直接与典型行业应用相结合,向全行业展示应用解决方案;三是成为一个RFID的标准验证平台供中国国家标准的设计、校验与评估应用。 技术。短时间内技术上是不易取得突破的。但是和前面的成本问题和标准问题相比,它又是最容易突破的。比如标签的制作工艺、射频传输距离、读出数据识别率、中间件、设备小型化等方面,前期的工作都已经打下了一定的基础。应该说,现在的资金投入已经可以取得回报了。 此外,虽然在RFID电子标签的单项技术上已经趋于成熟,但在集成应用中还需要攻克大量的技术难题。 还有一个问题就是识别率。不同性质的物品对无线电信号的干扰是不同的,通常,纸质、木质产品、农产品等对电磁信号的影响很小,在这种情况下,RFID标签的准确识别率可以达到90以上,但是,由于液体和金属制品等对无线电信号的干扰很大,RFID标签的准确识别率目前只有80%左右离“放心使用”的要求相去甚远。离大规模实际应用所要求的成熟程度尚有一定差距。 这些问题的解决,不仅需要技术人员的进一步攻关,同时也需要研究开发一套先进的、有典型情景的技术测试平台和完整的示范应用框架,为科技人员的技术开发和产品验证服务。 不论是技术还是应用,实际上都是环环相扣。推动产业的全面发展需要考虑很多方面。就像科技部马颂德副部长在大连国家半导体照明工程产业化基地授牌仪式上所说的,“与传统产业相比,世界各国在新型产业技术上的差距不大。重要的是协调发展问题。任何一个环节的停滞都会影响整个产业的发展。”我们在进一步研究RFID相关技术、推动RFID行业应用的同时,更要注重RFID的产业布局。在RFID领域还有很多工作要做,但是我们坚信,它的未来不是梦! EPC系统是在计算机互联网和射频技术RFID的基础上,利用全球统一标识系统编码技术给每一个实体对象一个惟一的代码,构造了一个实现全球物品信息实时共享的物联网“Internet of things”。它将成为继条码技术之后出现的又一项变革商品零售结算、物流配送及产品跟踪管理模式的新技术。 EPC/RFID技术的核心就是数据采集、数据跟踪、数据挖掘、信息共享。中国政府部门目前已经把数据资源建设和信息共享作为我国信息化发展的核心问题来看待。国家信息化办公室正在起草的“37号文件”,目的就是为了推动数据目录和数据交换体系的建设。 应当注意到,EPC系统并不能完全等同于RFID系统。前者是一个复杂、全面、综合的系统,包括RFID标签、EPC编码、互连网络、通信协议等,RFID只是其中的一个组成部分。而EPC也只是RFID技术的应用领域之一,只有特定的低成本RFID标签才适合EPC系统。通过进一步扩展基于无线射频原理的其他应用方向,我们还可以在诸如传感器网络、射频存储等领域开展有效的工作。但不论是EPC系统还是RFID技术,都还是襁褓中的婴儿,距离全面走向市场还有很长一段路。无线射频识别(RFID)技术是一种快速、实时、准确的信息采集与处理技术,通过射频信号对实体对象进行唯一有效的标识,可广泛应用于生产、零售、物流、交通、医疗、国防、畜牧、采矿等各个行业。软件 基本的RFID系统一般由3部分组成:标签、阅读器以及应用支撑软件。中间件是应用支撑软件的一个重要组成部分,是衔接硬件设备如标签、阅读器和企业应用软件如企业资源规划(ERP)、客户关系管理(CRM)等的桥梁。中间件的主要任务是对阅读器传来的与标签相关的数据进行过滤、汇总、计算、分组,减少从阅读器传往企业应用的大量原始数据、生成加入了语意解释的事件数据。可以说,中间件是RFID系统的“神经中枢”。 对于RFID中间件的设计,有诸多问题需要考虑,如:如何实现软件的诸多质量属性、如何实现中间件与硬件设备的隔离、如何处理与设备管理功能的关系、如何实现高性能的数据处理等等。1 RFID网络框架结构标签数据经过中间件的分组、过滤等处理上报给应用系统;应用系统负责事件数据的z久化存储,以及标签绑定的业务信息的管理。RFID系统共享公共服务平台提供根节点对象名称服务(ONS)、企业应用鉴权管理、标签信息发现和企业授权码管理等公共服务。其中,根节点ONS连同所有企业级RFID系统的内部ONS,组成一个ONS树,任何一个标签都可以在ONS树上找到标签所对应的标签信息库的地址,即可以进一步访问到标签对应的详细信息。2 中间件功能及实现原理一言蔽之,中间件的功能就是接受应用系统的请求,对指定的一个或者多个阅读器发起操作命令如标签清点、标签标识数据写入、标签用户数据区读写、标签数据加锁、标签杀死等,并接收、处理、向后台应用系统上报结果数据。其中,标签清点是最为基本、也是应用最为广泛的功能。2.1标签清点功能概述标签清点的工作流程可简单描述为:应用系统以规则的形式定义对标签数据的需求,规则由应用系统向中间件提出,由中间件维护。规则中定义了:需要哪些阅读器的清点数据,标签数据上报周期(事件周期)的开始和结束条件,标签数据如何过滤,标签数据如何分组,上报数据为原始清点数据、新增标签数据还是新减标签数据,标签数据包含哪些原始数据等。应用系统指定某项规则,向中间件提出对标签数据的预订。中间件根据应用系统对标签数据的预订情况,适时启动事件周期,并向阅读器下发标签清点命令。阅读器将一定时间周期(读取周期)中清点到的数据,发送给中间件。读取周期可由中间件与阅读器制定私下协商确定。中间件接由收阅读器上报的数据。中间件根据规则的定义,对接收数据做过滤、分组、累加等操作,并在事件周期结束时,按照规则的要求生成数据结果报告,发送给规则的预订者。过滤过程可去除重复数据、应用系统不感兴趣的数据,大大降低了组件间的传输数据量。此处,需要说明一下逻辑阅读器的概念。中间件将事件源抽象为一个逻辑概念逻辑阅读器,一个逻辑阅读器可以包含多个物理阅读器,甚至可更细化为包含多个物理阅读器的多个天线。逻辑阅读器的划分可以根据实际的系统部署情况来确定,比如,某一个仓库两个出口部署了4个阅读器,可根据需要将这4个阅读器配置成为一个逻辑阅读器,不妨命名为“仓库出口”。应用系统在需要仓库出口的标签数据时,可基于这个逻辑阅读器下发清点命令,而逻辑阅读器名称作为部分应用程序接口(API)调用的参数。2.2标签清点实现原理如前所述,规则是整个中间件功能的关键元素。规则相当于应用系统发给中间件的订货单,定义了对货品(标签数据)的时间(事件周期)和规格(如何过滤、如何分组、报告样式等)的要求,原理描述部分参考EPCglobal相关内容1。规则、报告有自身的信息模型,表征其承载的信息,同时,规则拥有其自身的状态机模型。在接受应用系统的长期预订、单次预订时,这些预订操作会激发规则的状态变迁,如从“未被请求”状态跃迁到“已被请求”状态。规则由应用系统通过API定义。(1) 规则信息模型在面向对象的语境中,规则可表征为一个类(ECSpec)。从信息模型描述中可看出,一个规则类,与其他多个类具有关联关系,或者说拥有如下属性:一个或者多个逻辑阅读器的列表(readers)、事件周期边界定义(boundaries)、一个或者多个报告的定义(reportSpecs)、是否在报告中包含规则本身的标记(includeSpecInReports)。(2) 报告信息模型其中,事件报告组类(ECReports)拥有如下属性:规则名称(specName)、时间上报时间(date)、事件周期时长(totalMilliseconds)、事件周期结束条件(terminationCondition)、规则定义类实例(spec)、一个或者多个报告类的实例列表(reports)。报告类(ECReport)中包含了具体的标签数据信息。(3) 标签清点API应用系统下发的定义规则、预订数据等请求,以调用中间件提供的API的方式完成。API调用过程可采用Java RMI、SOAP等相关具体技术实现。其中,poll操作相当于subscribe操作收到一个事件周期的数据之后调用unsubscribe操作;immediate操作相当于define操作定义规则之后,调用poll操作,然后调用undefine操作。(4) 规则状态机模型规则从其定义开始,可能存在于3种状态:未被请求状态(Unrequested)、已被请求状态(Requested)、激活状态(Active)。当规则创建之后,还没有被任何客户端(即应用系统)预订,规则处于Unrequested状态;对规则的第一个预订动作将使规则跃迁到Requested状态;当事件周期开始条件满足时,规则进入Active状态;当事件周期结束条件满足时,如果规则存在预订者,则跃迁到Requested状态,否则跃迁到Unrequested状态。3 中间件系统架构中间件系统作为一个软件系统(或称组件),在实现一定功能、性能要求之外,可理解性、可扩展性、可修改性(或称可重构性)、可插入性、可重用性等质量属性都将作为软件设计的要求被提出来。近十余年来,面向对象思想几乎全面占领软件设计领域,成为最主流的分析、设计方法。而近数年来,对设计模式的研究也已日臻完善,模式几乎已成为一种“更高级编程语言”(相比于Java、C+等高级编程语言)被广泛应用。面向对象思想、设计模式都是以实现软件的可理解、可扩展、可修改、可插入、可重用等目标为己任的,本文也将应用面向对象思想、参考模式语言,对中间件的软件架构做一个初步的探讨,下文的例子如涉及高级编程语言,均采用Java语言2。3.1封装、隔离处理流程中的各个节点将中间件的业务流程中的各个节点分作不同模块处理,可以获得封装、高内聚、低耦合等优势。其中,报告上传模块,负责实现不同类型的报告上传方式,如HTTP、JMS等;API接口模块,负责隔离应用系统和中间件核心业务逻辑处理模块,向应用系统提供中间件API接口;中间件核心业务逻辑处理模块,负责中间件核心业务,包括数据接收过滤、数据分组、报告生成、规则对象的状态跳转等;阅读器通信模块,负责中间件系统与阅读器的通信。3.2门面模式、工厂模式对外部暴露API接口为了避免后台应用系统,即中间件的客户端过分耦合,采用门面模式(Facade)对系统内部、外部实现清晰的隔离。处理流程可参见图6所示的序列图。客户端仅仅与Facade类建立联系,如果Facade接口定义得足够清晰,客户端可以对中间件的内部实现一无所知,这体现了面向对象中的封装性。类的设计参见源代码示例,从中可以看出,采用简单工厂模式(Simple Factory)能够在客户端不知情的情况下,灵活地替换API实现类的版本。中间件API接口清晰地定义了中间件提供的操作,客户端只须知道工厂类(APIFactory)能够得到中间件API接口的实例即可。中间件API接口MiddlewareAPI:publicinterfaceMiddlewareAPIvoid define(String specName, ECSpec spec);void undefine(String specName);void subscribe(String specName, String uri);void unsubscribe(String specName, String uri);EPCReports poll(String specName);EPCReports immediate(ECSpec spec);工厂类APIFactory:publicclassAPIFactorypublicstaticMiddlewareAPIgetAPIInstance()API的实现类A:publicclassClientpublicstaticvoidmain(String args) MiddlewareAPI api = APIFactory.getAPIInstance();api.define(a new spec, new EPCSpec();3.3状态模式模拟规则的状态机规则在其生命周期中拥有不同的状态,在每个状态对一系列操作都有着不同的表现,于是可以利用状态模式(state)来模拟规则的状态机,将不同状态的不同表现作为可变化因素封装起来,参见代码示例。规则状态接口ECState:publicinterfaceECStatevoidsubscribe(StringspecName,String uri);voidunsubscribe(StringspecName,String uri);EPCReportspoll(StringspecName);未被请求状态类ECStateUnrequested:publicclassECStateUnrequestedimplements ECState 已被请求状态类ECStateRequested:publicclassECStateRrequestedimplements ECState 激活状态类ECStateActive:publicclassECStateActiveimplements ECState 规则类ECSpec:publicclassECSpecprivateECStatestate;publicECStategetState()return state;publicvoidsetState(ECStatestate) this.state = state;这样,在针对规则实施相应操作的时候,就可以直接把相应操作委派给其状态属性(ECState)去做即可。比如,ECSpec的subscribe操作,只需一行代码“state.suscribe(specName, uri); ”即可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 湖南省益阳市2026届化学高二上期中质量跟踪监视模拟试题含解析
- 南京水利科学研究院公开招聘人员笔试高频难、易错点备考题库带答案详解
- 南江县人力资源和社会保障局南江县教育科技局2025年赴高校公开考试(考核)招聘急需紧缺学科教师的(35人)考前自测高频考点模拟试题含答案解析
- 酒店客户关系管理方案
- 防火隔离带材料选择与应用方案
- 燃料电池寿命提升-洞察及研究
- 2025年事业单位笔试-河南-河南骨外科(医疗招聘)历年参考题库典型考点含答案解析
- 山区资源循环利用-洞察及研究
- 碳中和科技投资-洞察及研究
- 城市废弃地再利用规划
- HTD9000-X5S仪表自动化培训与技能竞赛综合装置【说明书】A420241009
- 阿加曲班的应用及护理
- 北京师范大学贵阳附属学校教师招聘笔试真题2024
- 幼儿园食堂人员岗位技能比赛方案及评分标准
- 电力电缆及通道检修规程QGDW 11262-2014(文字版)
- 五年级上册语文阅读理解常考题型和答题公式
- 协同育人机制:家校社联动的实践逻辑与路径
- 《乡村治理理论与实践》课件第五章 乡村治理的机制
- 2020年7月26日河北省委政法委遴选考试真题及答案
- 代谢相关(非酒精性)脂肪性肝病防治指南(2024年版)
- 亲子关系断绝书格式
评论
0/150
提交评论