




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数的定义域与值域、单调性与奇偶性 一、知识归纳:1. 求函数的解析式(1)求函数解析式的常用方法:换元法( 注意新元的取值范围)待定系数法(已知函数类型如:一次、二次函数、反比例函数等)整体代换(配凑法)构造方程组(如自变量互为倒数、已知f(x)为奇函数且g(x)为偶函数等)(2)求函数的解析式应指明函数的定义域,函数的定义域是使式子有意义的自变量的取值范围,同时也要注意变量的实际意义。(3)理解轨迹思想在求对称曲线中的应用。2. 求函数的定义域求用解析式yf(x)表示的函数的定义域时,常有以下几种情况:若f(x)是整式,则函数的定义域是实数集R;若f(x)是分式,则函数的定义域是使分母不等于0的实数集;若f(x)是二次根式,则函数的定义域是使根号内的式子大于或等于0的实数集合;若f(x)是由几个部分的数学式子构成的,则函数的定义域是使各部分式子都有意义的实数集合;若f(x)是由实际问题抽象出来的函数,则函数的定义域应符合实际问题.3. 求函数值域(最值)的一般方法:(1)利用基本初等函数的值域;(2)配方法(二次函数或可转化为二次函数的函数);(3)不等式法(利用基本不等式,尤其注意形如型的函数)(4)函数的单调性:特别关注的图象及性质(5)部分分式法、判别式法(分式函数)(6)换元法(无理函数)(7)导数法(高次函数)(8)反函数法(9)数形结合法4. 求函数的单调性(1)定义法:(2)导数法: (3)利用复合函数的单调性:(4)关于函数单调性还有以下一些常见结论:两个增(减)函数的和为_;一个增(减)函数与一个减(增)函数的差是_;奇函数在对称的两个区间上有_的单调性;偶函数在对称的两个区间上有_的单调性;互为反函数的两个函数在各自定义域上有_的单调性; (5)求函数单调区间的常用方法:定义法、图象法、复合函数法、导数法等(6)应用:比较大小,证明不等式,解不等式。5. 函数的奇偶性奇偶性:定义:注意区间是否关于原点对称,比较f(x) 与f(x)的关系。f(x) f(x)0f(x) f(x) f(x)为偶函数;f(x)+f(x)0f(x) f(x) f(x)为奇函数。判别方法:定义法,图象法,复合函数法应用:把函数值进行转化求解。6. 周期性:定义:若函数f(x)对定义域内的任意x满足:f(x+T)f(x),则T为函数f(x)的周期。其他:若函数f(x)对定义域内的任意x满足:f(x+a)f(xa),则2a为函数f(x)的周期.应用:求函数值和某个区间上的函数解析式。二、典型例题分析例1. 若集合Aa1,a2,a3,Bb1,b2 求从集合A到集合B的映射的个数。分析:解决这类问题,关键是要掌握映射的概念:设A、B是两个集合,对于集合A中的任何一个元素,按照某种对应法则f,若集合B中都有唯一确定的元素和它对应,这时对应法则f叫做从集合A到集合B的映射。这里要掌握关键的两个词“任何”、“唯一”。对于本例,集合Aa1,a2,a3中的每一个元素的象都有b1或b2这两种情形,由乘法原理可知,A到B的映射的个数共有N2228个。例2. 线段|BC|4,BC的中点为M,点A与B、C两点的距离之和为6,设|AM|y,|AB|x,求yf(x)的函数表达式及这函数的定义域。解:1若A、B、C三点不共线,如图所示,由余弦定理可知,x222+y24ycosAMB (6x)222+y24ycos(180AMB) + x2+(6x)22y2+8 y2x26x+14又 x26x+14(x3)2+5恒正,又三点A、B、C能构成三角形1x52若三点A、B、C共线,由题意可知,x+46x,x1 或4+6xx x5综上所述: 说明:第一,首先要分析三点A、B、C是否在同一条直线上,因为由题意,A、B、C不一定能构成三角形,它们也可在同一条直线上,所以要分两种情形来讨论。第二,实际问题在求解析式时要特别注意函数的定义域。例3. 设f(x)为定义在R上的偶函数,当x1时,yf(x)的图象是经过点(2,0),斜率为1的射线,又在yf(x)的图象中有一部分是顶点在(0,2),且过点(1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象。 解:(1)当x1时,设f(x)x+b射线过点(2,0) 02+b即b2,f(x)x+2 (2)当1x1时,设f(x)ax2+2 抛物线过点(1,1),1a(1)2+2,即a1f(x)x2+2 (3)当x1时,f(x)x+2综上可知:f(x)作图由读者来完成。例4. 求下列函数的定义域(1) (2)解:(1)x4或x1且x3,即函数的定义域为(,3)(3,1)4,+(2),则 00,b0)是奇函数,当x0时,f(x)有最小值2,其中bN且f(1)0,b0,x0,f(x)2,当且仅当x时等号成立,于是22,ab2,由f(1)得即,2b25b+20,解得b2,又bN,b1,a1,f(x)x+ (2)设存在一点(x0,y0)在yf(x)的图象上,并且关于(1,0)的对称点(2x0,y0)也在yf(x)的图象上,则消去y0得x022x010,x01 yf(x)的图象上存在两点(1+,2),(1,2)关于(1,0)对称 例10. 已知奇函数f(x)的定义域为R,且f(x)在0,+)上是增函数,是否存在实数m,使f(cos23)+f(4m2mcos)f(0)对所有0,都成立?若存在,求出符合条件的所有实数m的范围,若不存在,说明理由 解:f(x)是R上的奇函数,且在0,+)上是增函数,f(x)是R上的增函数 于是不等式可等价地转化为f(cos23)f(2mcos4m),即cos232mcos4m,即cos2mcos+2m20 设tcos,则问题等价地转化为函数g(t)t2mt+2m2(t)2+2m2在0,1上的值恒为正,又转化为函数g(t)在0,1上的最小值为正 当0,即m0m1与m042m4+2,421,即m2时,g(1)m10m1 m2综上,符合题目要求的m的值存在,其取值范围是m42 另法(仅限当m能够解出的情况)cos2mcos+2m20对于0,恒成立,等价于m(2cos2)/(2cos) 对于0,恒成立当0,时,(2cos2)/(2cos) 42,m42 例11. 设a为实数,记函数f(x)a的最大值为g(a)。(1)设t,求t的取值范围并把f(x)表示为t的函数m(t);(2)求g(a);(3)求满足g(a)g()的所有实数a.解:(1)t要使t有意义,必须有1+x0且1x0,即1x1.t22+22,4,t0 t的取值范围是,2由得x21m(t)a(t2)tat2+ta, t,2 (2)由题意知g(a)即为函数m(t)at2+ta, t,2的最大值.注意到直线t是抛物线m(t)at2+ta的对称轴,分下列情况讨论.当a0时,函数ym(t), t,2的图像是开口向上的抛物线的一段,由t0知m(t)在,2上单调递增,g(a)m(2)a+2.当a0时,m(t)t, t,2, g(a)2. 当a时,g(a)a+2,当时,a,所以,g(a)2.因此当a时,g(a) .当a0时,0,由g(a)g()知a+2+2解得a1.当a0时,1,因此a1或1,从而g(a)或g().要使g(a)g(),必须有a或,即a此时g(a)g().综上知,满足g(a)g()的所有实数a为:a或a1.【模拟试题】(一)选择题1. 设f(x)是(,+)上的奇函数,f(x+2)f(x),当0x1时,f(x)x,则f(7 5)等于( )A. 0.5B. 0.5C. 1.5D. 1.52. 已知定义域为(1,1)的奇函数yf(x)又是减函数,且f(a3)+f(9a2)1时f(x)等于( )A. f(x)(x+3)21B. f(x)(x3)21C. f(x)(x3)2+1D. f(x)(x1)215. 函数的值域是 ( )A. (,1) B. 1,+C. (0,1)D. 0,16. 的值域是 ( )A. y2 B. y2 C. yR D. y0(二)填空题7. 若f(x)为奇函数,且在(0,+)内是增函数,又f(3)0,则xf(x)0,b0)是奇函数,当x0时,f(x)有最小值2,其中bN且f(1)0,b0,x0,f(x)2,当且仅当x时等号成立,于是22,ab2,由f(1)得即,2b25b+20,解得b2,又bN,b1,a1,f(x)x+。(2)设存在一点(x0,y0)在yf(x)的图象上,并且关于(1,0)的对称点(2x0,y0)也在yf(x)图象上,则消去y0得x022x010,x01。 yf(x)图象上存在两点(1+,2),(1,2)关于(1,0)对。14. (1)证明:yf(x)是以5为周期的周期函数,f(4)f(45)f(1),又yf(x)(1x1)是奇函数,f(1)f(1)f(4),f(1)+f(4)0 (2)解:当x1,4时,由题意,可设f(x)a(x2)25(a0),由f(1)+f(4)0得a(12)25+a(42)250,解得a2,f(x)2(x2)25(1x4) (3)解:yf(x)(1x1)是奇函数,f(0)f(0),f(0)0,又yf(x) (0x1)是一次函数,可设f(x)kx(0x1),f(1)2(12)253, f(1)k1k,k3 当0x1时,f(x)3x,当1x0时,f(x)3x,当4x6时,1x51,f(x)f(x5)3(x5)3x+15,当6x9时,1x54,f(x)f(x5)2(x5)2252(x7)25 f(x) 三角函数典型例题1 设锐角的内角的对边分别为,.()求的大小;()求的取值范围.【解析】:()由,根据正弦定理得,所以,由为锐角三角形得.().2 在中,角A BC的对边分别为a、b、c,且满足(2a-c)cosB=bcos C()求角B的大小;20070316 ()设且的最大值是5,求k的值.【解析】:(I)(2a-c)cosB=bcosC,(2sinA-sinC)cosB=sinBcos C 即2sinAcosB=sinBcosC+sinCcosB=sin(B+C)A+B+C=,2sinAcosB=sinA 0A,sinA0.cosB=. 0B1,t=1时,取最大值.依题意得,-2+4k+1=5,k=.3 在中,角所对的边分别为,.I.试判断的形状; II.若的周长为16,求面积的最大值.【解析】:I.,所以此三角形为直角三角形.II.,当且仅当时取等号,此时面积的最大值为.4 在中,a、b、c分别是角A BC的对边,C=2A,(1)求的值;(2)若,求边AC的长【解析】:(1)(2) 又 由解得a=4,c=6,即AC边的长为5.5 已知在中,且与是方程的两个根.()求的值;()若AB,求BC的长.【解析】:()由所给条件,方程的两根. (),.由()知,为三角形的内角, ,为三角形的内角, 由正弦定理得: .6 在中,已知内角A BC所对的边分别为a、b、c,向量,且(I)求锐角B的大小;(II)如果,求的面积的最大值【解析】:(1) 2sinB(2cos2-1)=-cos2B2sinBcosB=-cos2B tan2B=-02B,2B=,锐角B=(2)由tan2B=- B=或当B=时,已知b=2,由余弦定理,得:4=a2+c2-ac2ac-ac=ac(当且仅当a=c=2时等号成立)ABC的面积SABC= acsinB=acABC的面积最大值为当B=时,已知b=2,由余弦定理,得:4=a2+c2+ac2ac+ac=(2+)ac(当且仅当a=c=-时等号成立)ac4(2-)ABC的面积SABC= acsinB=ac 2-ABC的面积最大值为2-7 在中,角A BC所对的边分别是a,b,c,且(1)求的值;(2)若b=2,求ABC面积的最大值.【解析】:(1) 由余弦定理:cosB= +cos2B= (2)由 b=2, +=ac+42ac,得ac, SABC=acsinB(a=c时取等号)故SABC的最大值为8 已知,求的值【解析】;9 已知(I)化简(II)若是第三象限角,且,求的值【解析】 10已知函数f(x)=sin2x+sinxcosx+2cos2x,xR.(1)求函数f(x)的最小正周期和单调增区间;(2)函数f(x)的图象可以由函数y=sin2x(xR)的图象经过怎样的变换得到?【解析】:(1) 的最小正周期 由题意得即 的单调增区间为 (2)先把图象上所有点向左平移个单位长度, 得到的图象,再把所得图象上所有的点向上平移个单位长度, 就得到的图象 11已知,(1)求的单调递减区间(2)若函数与关于直线对称,求当时,的最大值【解析】:(1) 当时,单调递减 解得:时,单调递减 (2)函数与关于直线对称 时, 12已知,求下列各式的值;(1);(2)【解析】: (1) (2) 13设向量,函数(I)求函数的最大值与最小正周期;(II)求使不等式成立的的取值集合【解析】14已知向量,与为共线向量,且()求的值;()求的值.【解析】:() 与为共线向量, ,即 () , , 又, 因此, 15如图,A,B,C,D都在同一个与水平面垂直的平面内,B,D为两岛上的两座灯塔的塔顶测量船于水面A处测得B点和D点的仰角分别为,于水面C处测得B点和D点的仰角均为,AC=0.1km试探究图中B,D间距离与另外哪两点距离相等,然后求B,D的距离(计算结果精确到0.01km,1.414,2.449) 【解析】:在中,=30,=60-=30,所以CD=AC=0.1又=180-60-60=60,故CB是底边AD的中垂线,所以BD=BA 在中, 即AB=因此,故 BD的距离约为0.33km 16已知函数(其中)的图象与x轴的交点中,相邻两个交点之间的距离为,且图象上一个最低点为.()求的解析式;()当,求的值域. w.w.w.k.s.5.u.c.o.m 【解析】: (1)由最低点为得A=2.由x轴上相邻的两个交点之间的距离为得=,即,由点在图像上的故 又(2)当=,即时,取得最大值2;当即时,取得最小值-1,故的值域为-1,2 17如图,为了解某海域海底构造,在海平面内一条直线上的A,B,C三点进行测量,已知,于A处测得水深,于B处测得水深,于C处测得水深,求DEF的余弦值 【解析】:作交BE于N,交CF于M., , 在中,由余弦定理, 18已知,求(1)(2)(3)【解析】:(1) 19已知函数(, ,)的一段图象如图所示,(1)求函数的解析式;(2)求这个函数的单调递增区间。【解析】:(1)由图象可知: ; ,又为“五点画法”中的第二点 所求函数解析式为:(2)当时,单调递增20已知的内角A BC所对边分别为a、b、c,设向量,且.()求的值;()求的最大值.【解析】()由,得即 也即 21已知函数,求:(1)函数的定义域和值域; (2)写出函数的单调递增区间。【解析】: ()函数的定义域 函数的值域为 ()令得函数的单调递增区间是 22如图为一个观览车示意图该观览车圆半径为4.8m,圆上最低点与地面距离为0.8m,60秒转动一圈途中与地面垂直以为始边,逆时针转动角到设点与地面距离为(1)求与的函数解析式;(2)设从开始转动,经过80秒到达,求. 【解析】:(1),(2),(m)23设函数(1)求函数上的单调递增区间;(2)当的取值范围。【解析】:(1), (2)当,24已知函数,(1)求的最大值和最小值;(2)在上恒成立,求实数的取值范围【解析】() 又,即,(),且,即的取值范围是25在锐角ABC中,角A BC的对边分别为a、b、c,已知(I)求角A;(II)若a=2,求ABC面积S的最大值【解析】:(I)由已知得 又在锐角ABC中,所以A=60,不说明是锐角ABC中,扣1分 (II)因为a=2,A=60所以 而 又 所以ABC面积S的最大值等于 26甲船由A岛出发向北偏东45的方向作匀速直线航行,速度为15浬/小时,在甲船从A岛出发的同时,乙船从A岛正南40浬处的B岛出发,朝北偏东(的方向作匀速直线航行,速度为10 浬/小时.(如图所示)()求出发后3小时两船相距多少浬?()求两船出发后多长时间相距最近?最近距离为多少浬?【解析】:以A为原点,BA所在直线为y轴建立如图所示的平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学美术学科培训
- ICU护理学习文献汇报
- 电梯安全知识教育
- 建筑企业质量安全月培训
- 海关监管体系课件
- 个人舞蹈教室租赁合同模板
- 罐头食品HACCP体系评估与优化合同
- 企业股权收购撤销及利益分配合同
- 餐饮行业食品安全事故处理协议
- 知名餐饮品牌总经理任职及品牌推广合同
- 2025年农业果园土地租赁承包合同
- 2025小升初人教版六年级英语下学期期末综合测试模拟练习卷
- 青浦区区管企业统一招聘考试真题2024
- Seldinger穿刺技术课件
- 船体结构与制图知到智慧树期末考试答案题库2025年华中科技大学
- 2025年度医疗机构应急预案演练计划
- 过户光伏合同能源管理协议
- 2025至2030年中国稀奶油市场分析及竞争策略研究报告
- 智慧矿山无人机自动巡检解决方案
- 抽水蓄能电站全生命周期成本控制及优化方案研究
- 2025-2030智能制造装备行业市场发展分析及前景趋势与投资研究报告
评论
0/150
提交评论