




已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
北京市2006年高级中等学校招生统一考试(课标B卷)数学试卷考生须知1本试卷分为第卷、第卷,共10页,共九道大题,25个小题,满分120分考试时间120分钟2在试卷密封线内认真填写区(县)名称、毕业学校、姓名、报名号、准考证号3考试结束,请将本试卷和答题卡一并交回第卷(机读卷共32分)考生须知1第卷共2页,共一道大题,8个小题2试题答案一律填涂在机读答题卡上,在试卷上作答无效一、选择题(共8个小题,每小题4分,共32分)下列各题均有四个选项,其中只有一个是符合题意的用铅笔把“机读答题卡”上对应题目答案的相应字母处涂黑1的相反数是()2青藏高原是世界上海拔最高的高原,它的面积约为平方千米将用科学记数法表示应为()3在函数中,自变量的取值范围是()4如图,点在的延长线上,若,则的度数为()5小芸所在学习小组的同学们,响应“为祖国争光,为奥运添彩”的号召,主动到附近的7个社区帮助爷爷,奶奶们学习英语日常用语他们记录的各社区参加其中一次活动的人数如下:33,32,32,31,28,26,32,那么这组数据的众数和中位数分别是()32,3132,323,313,326把代数式分解因式,结果正确的是()7掷一枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,掷得面朝上的点数为奇数的概率为()8将如右图所示的圆心角为的扇形纸片围成圆锥形纸帽,使扇形的两条半径与重合(接缝粘贴部分忽略不计),则围成的圆锥形纸帽是()北京市2006年高级中等学校招生统一考试(课标B卷)数学试卷第II卷(非机读卷共88分)考生须知1第卷共8页,共八道大题,17个小题2除画图可以用铅笔外,答题必须用黑色或蓝色钢笔、圆珠笔二、填空题(共4个小题,每小题4分,共16分)9若关于的一元二次方程有实数根,则的取值范围是10若,则的值为11用“”定义新运算:对于任意实数,都有例如,那么;当为实数时,12如图,在中,分别是,的中点,为上的点,连结,若,则图中阴影部分的面积为三、解答题(共5个小题,共25分)13(本小题满分5分)计算:解:14(本小题满分5分)解不等式组解:15(本小题满分5分)解分式方程解:16(本小题满分5分)已知:如图,点,点在上,求证:证明:17(本小题满分5分)已知,求代数式的值解:四、解答题(共2个小题,共11分)18(本小题满分5分)已知:如图,在梯形中,于点,求:的长解:19(本小题满分6分)已知:如图,内接于,点在的延长线上,(1)求证:是的切线;(2)若,求的长(1)证明:(2)解:五、解答题(本题满分5分)2000年,2005年北京市常住人口中教育情况统计表(人数单位:万人)20根据北京市统计局公布的2000年,2005年北京市常住人口相关数据,绘制统计图表如下:年份大学程度人数(指大专及以上)高中程度人数(含中专)初中程度人数小学程度人数其他人数2000年2333204752341202005年362372476212114请利用上述统计图表提供的信息回答下列问题:(1)从2000年到2005年北京市常住人口增加了多少万人?(2)2005年北京市常住人口中,少儿(岁)人口约为多少万人?(3)请结合2000年和2005年北京市常住人口受教育程度的状况,谈谈你的看法解:(1)(2)(3)六、解答题(共2个小题,共9分)21(本小题满分5分)在平面直角坐标系中,直线绕点顺时针旋转得到直线直线与反比例函数的图象的一个交点为,试确定反比例函数的解析式解:22(本小题满分4分)请阅读下列材料:问题:现有5个边长为1的正方形,排列形式如图1,请把它们分割后拼接成一个新的正方形要求:画出分割线并在正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形小东同学的做法是:设新正方形的边长为依题意,割补前后图形的面积相等,有,解得由此可知新正方形的边长等于两个正方形组成的矩形对角线的长于是,画出如图2所示的分割线,拼出如图3所示的新正方形图1图2 图3 请你参考小东同学的做法,解决如下问题:现有10个边长为1的正方形,排列形式如图4,请把它们分割后拼接成一个新的正方形要求:在图4中画出分割线,并在图5的正方形网格图(图中每个小正方形的边长均为1)中用实线画出拼接成的新正方形图4 图5 说明:直接画出图形,不要求写分析过程解:七、解答题(本题满分6分)23如图1,是的平分线,请你利用该图形画一对以所在直线为对称轴的全等三角形请你参考这个作全等三角形的方法,解答下列问题:(1)如图2,在中,是直角,分别是,的平分线,相交于点请你判断并写出与之间的数量关系;(2)如图3,在中,如果不是直角,而(1)中的其他条件不变,请问,你在(1)中所得结论是否仍然成立?若成立,请证明;若不成立,请说明理由NPMO图1图2ACDBEF解:画图:FBEACD图3(1)与之间的数量关系为(2)八、解答题(本题满分8分)24已知抛物线与轴交于点,与轴分别交于,两点(1)求此抛物线的解析式;123456754321O(2)若点为线段的一个三等分点,求直线的解析式;(3)若一个动点自的中点出发,先到达轴上的某点(设为点),再到达抛物线的对称轴上某点(设为点),最后运动到点求使点运动的总路径最短的点,点的坐标,并求出这个最短总路径的长解:(1)(2)(3)九、解答题(本题满分8分)25我们给出如下定义:若一个四边形的两条对角线相等,则称这个四边形为等对角线四边形请解答下列问题:(1)写出你所学过的特殊四边形中是等对角线四边形的两种图形的名称;(2)探究:当等对角线四边形中两条对角线所夹锐角为时,这对角所对的两边之和与其中一条对角线的大小关系,并证明你的结论解:(1)(2)北京市2006年高级中等学校招生统一考试(课标卷)数学试卷答案及评分参考阅卷须知:1一律用红钢笔或红圆珠笔批阅,按要求签名2第I卷是选择题,机读阅卷3第II卷包括填空题和解答题为了阅卷方便,解答题中的推导步骤写得较为详细,考生只要写明主要过程即可若考生的解法与本解法不同,正确者可参照评分参考给分解答右端所注分数,表示考生正确做到这一步应得的累加分数第I卷(机读卷共32分)一、选择题(共8个小题,每小题4分,共32分)题号12345678答案第II卷(非机读卷共88分)二、填空题(共4个小题,每小题4分,共16分)题号9101112答案2102630三、解答题(本题共30分,每小题5分)13解:4分5分14解:由不等式解得2分由不等式解得4分则不等式组的解集为5分15解:2分3分4分经检验是原方程的解所以原方程的解是5分16证明:因为,则1分又,则2分在与中,3分所以4分所以5分17解:2分3分当时,原式5分四、解答题(共2个小题,共11分)18解:如图,过点作交于点1分因为,所以四边形是平行四边形2分所以由,得在中,由,求得3分所以4分在中,求得5分19解:(1)证明:如图,连结因为,所以故1分又,所以是等边三角形故2分因为,所以所以是的切线3分(2)解:因为,所以垂直平分则4分所以5分在中,由正切定义,有所以6分五、解答题(本题满分5分)20解:(1)(万人)1分故从2000年到2005年北京市常住人口增加了154万人(2)(万人)故2005年北京市常住人口中,少儿(岁)人口约为157万人3分(3)例如:依数据可得,2000年受大学教育的人口比例为,2005年受大学教育的人口比例为可知,受大学教育的人口比例明显增加,教育水平有所提高5分六、解答题(共2个小题,共9分)21解:依题意得,直线的解析式为2分因为在直线上,则3分即又因为在的图象上,可求得4分所以反比例函数的解析式为5分图4 图5 22解:所画图形如图所示说明:图4与图5中所画图形正确各得2分分割方法不唯一,正确者相应给分七、解答题(本题满分6分)23解:图略画图正确得1分(1)与之间的数量关系为2分(2)答:(1)中的结论仍然成立证法一:如图4,在上截取,连结3分FBEACD图4243G因为,为公共边,可证所以,4分由,分别是的平分线,可得所以所以5分由及为公共边,可得所以所以6分证法二:如图5,过点分别作于点,于点3分FBEACD图5243H因为,且,分别是,的平分线,所以可得,是的内心4分所以,又因为,所以5分因此可证所以6分八、解答题(本题满分8分)24解:(1)根据题意,所以解得所以抛物线解析式为2分(2)依题意可得的三等分点分别为,设直线的解析式为当点的坐标为时,直线的解析式为;3分当点的坐标为时,直线的解析式为4分xyA3M3(3)如图,由题意,可得点关于轴的对称点为,点关于抛物线对称轴的对称点为连结根据轴对称性及两点间线段最短可知,的长就是所求点运动的最短总路径的长5分所以与轴的交点为所求点,与直线的交点为所求点可求得直线的解析式为可得点坐标为,点坐标为7分由勾股定理可求出所以点运动的最短总路径的长为8分九、解答题(本题满分8分)25解:(1)略写对一种图形的名称给1分,最多给2分(2)结论:等对角线四边形中两条对角线所夹锐角为时,这对角
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高效能离婚抚养权协议与子女学业成绩提升
- 双方自愿离婚财产分配及子女监护协议
- 无子女离婚后财产分割及子女抚养费及探望权协议范本
- 离婚协议书范本:法律依据与签署流程详解
- 房屋租赁合同中关于租赁物转租的附加协议
- 智能交通科技公司股份收购与城市交通优化协议
- 客服给员工培训
- 辽沈战役课件与
- 中国历史文选 课件 第五讲 韩非子;第六讲 秦始皇本纪
- 临床基础检验技术试题及答案解析
- 电话客服服务流程与标准
- GB/T 33629-2024风能发电系统雷电防护
- 综合应用能力事业单位考试(综合管理类A类)试题及解答参考(2024年)
- 2024-2025学年中职数学拓展模块一 (上册)高教版(2021·十四五)教学设计合集
- 新苏教版六年级科学上册活动手册答案
- 新人教版七年级上册初中数学全册教材习题课件
- 《中小学生研学旅行实务》研学旅行指导课程全套教学课件
- 兼任宗教活动场所管理组织负责人备案表
- 化肥欠款协议模板
- 小红书口碑对旅游者目的地决策的影响研究
- 查缉酒驾实战培训课件
评论
0/150
提交评论