




已阅读5页,还剩174页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
新人教版九年级上册数学同步练习2019-1-122.1一元二次方程随堂检测1、判断下列方程,是一元二次方程的有_.(1); (2); (3);(4);(5);(6).(提示:判断一个方程是不是一元二次方程,首先要对其整理成一般形式,然后根据定义判断.)2、下列方程中不含一次项的是( )A B C D3、方程的二次项系数_;一次项系数_;常数项_.4、1、下列各数是方程解的是( )A、6 B、2 C、4 D、05、根据下列问题,列出关于的方程,并将其化成一元二次方程的一般形式.(1)4个完全相同的正方形的面积之和是25,求正方形的边长.(2)一个矩形的长比宽多2,面积是100,求矩形的长.(3)一个直角三角形的斜边长为10,两条直角边相差2,求较长的直角边长.典例分析已知关于的方程(1)为何值时,此方程是一元一次方程?(2)为何值时,此方程是一元二次方程?并写出一元二次方程的二次项系数、一次项系数及常数项。分析:本题是含有字母系数的方程问题根据一元一次方程和一元二次方程的定义,分别进行讨论求解.解:(1)由题意得,时,即时,方程是一元一次方程.(2)由题意得,时,即时,方程是一元二次方程.此方程的二次项系数是、一次项系数是、常数项是.课下作业拓展提高1、下列方程一定是一元二次方程的是( )A、 B、C、 D、2、是关于的一元二次方程,则的值应为( )A、2 B、 C、 D、无法确定3、根据下列表格对应值:3.243.253.26-0.020.010.03判断关于的方程的一个解的范围是( )A、3.24 B、3.243.25C、3.253.26 D、3.253.284、若一元二次方程有一个根为1,则_;若有一个根是-1,则b与、c之间的关系为_;若有一个根为0,则c=_.5、下面哪些数是方程的根?-3、-2、-1、0、1、2、3、6、若关于的一元二次方程的常数项为0,求的值是多少?体验中考1、(2009年,武汉)已知是一元二次方程的一个解,则的值是( )A-3 B3 C0 D0或3(点拨:本题考查一元二次方程的解的意义.)2、(2009年,日照)若是关于的方程的根,则的值为( )A1 B2 C-1 D-2(提示:本题有两个待定字母和,根据已知条件不能分别求出它们的值,故考虑运用整体思想,直接求出它们的和.)参考答案:随堂检测1、(2)、(3)、(4) (1)中最高次数是三不是二;(5)中整理后是一次方程;(6)中只有在满足的条件下才是一元二次方程2、D 首先要对方程整理成一般形式,D选项为.故选D.3、3;-11;-7 利用去括号、移项、合并同类项等步骤,把一元二次方程化成一般形式,同时注意系数符号问题.4、B 将各数值分别代入方程,只有选项B能使等式成立故选B.5、解:(1)依题意得,化为一元二次方程的一般形式得,.(2)依题意得,化为一元二次方程的一般形式得,.(3)依题意得,化为一元二次方程的一般形式得,.课下作业拓展提高1、D A中最高次数是三不是二;B中整理后是一次方程;C中只有在满足的条件下才是一元二次方程;D选项二次项系数恒成立.故根据定义判断D.2、C 由题意得,解得.故选D.3、B 当3.243.25时,的值由负连续变化到正,说明在3.243.25范围内一定有一个的值,使,即是方程的一个解.故选B.4、0;0 将各根分别代入简即可.5、解:将代入方程,左式=,即左式右式.故不是方程的根.同理可得时,都不是方程的根.当时,左式=右式.故都是方程的根.6、解:由题意得,时,即时,的常数项为0.体验中考1、A 将带入方程得,.故选A.2、D 将带入方程得,.故选D.22.2 二次函数与一元二次方程第1课时 二次函数与一元二次方程基础训练1.已知二次函数y=ax2-5x+c的图象如图所示,请根据图象回答下列问题: (1) a=_,c=_. (2)函数图象的对称轴是_,顶点坐标P_. (3)该函数有最_值,当x=_时,y最值=_. (4)当x_时,y随x的增大而减小. 当x_时,y随x的增大而增大.(5)抛物线与x轴交点坐标A_,B_;与y轴交点C 的坐标为_;=_,=_. (6)当y0时,x的取值范围是_;当y0?3.请画出适当的函数图象,求方程x2=x+3的解.4.若二次函数y=-x2+bx+c的图象与x轴相交于A(-5,0),B(-1,0). (1)求这个二次函数的关系式; (2)如果要通过适当的平移,使得这个函数的图象与x轴只有一个交点,那么应该怎样平移?向右还是向左?或者是向上还是向下?应该平移向个单位?5.已知某型汽车在干燥的路面上, 汽车停止行驶所需的刹车距离与刹车时的车速之间有下表所示的对应关系.速度V(km/h)48648096112刹车距离s(m)22.53652.57294.5 (1)请你以汽车刹车时的车速V为自变量,刹车距离s为函数, 在图所示的坐标系中描点连线,画出函数的图象; (2)观察所画的函数的图象,你发现了什么? (3)若把这个函数的图象看成是一条抛物线,请根据表中所给的数据,选择三对,求出它的函数关系式; (4)用你留下的两对数据,验证一个你所得到的结论是否正确.能力提升6.如图所示,矩形ABCD的边AB=3,AD=2,将此矩形置入直角坐标系中,使AB在x 轴上,点C 在直线y=x-2上. (1)求矩形各顶点坐标; (2)若直线y=x-2与y轴交于点E,抛物线过E、A、B三点,求抛物线的关系式; (3)判断上述抛物线的顶点是否落在矩形ABCD内部,并说明理由.7.已知一条抛物线经过A(0,3),B(4,6)两点,对称轴是x=. (1)求这条抛物线的关系式. (2)证明:这条抛物线与x轴的两个交点中,必存在点C,使得对x轴上任意点D都有AC+BCAD+BD.8.如图所示,一位篮球运动员在离篮圈水平距离为4m处跳起投篮,球沿一条抛物线运行,当球运行的水平距离为2.5m时,达到最大高度3.5m,然后准确落入篮框内.已知篮圈中心离地面距离为3.05m. (1)建立如图所示的直角坐标系,求抛物线所对应的函数关系式; (2)若该运动员身高1.8m,这次跳投时,球在他头顶上方0.25m处出手.问:球出手时,他跳离地面多高?9.某工厂生产A产品x吨所需费用为P元,而卖出x吨这种产品的售价为每吨Q元, 已知P=x2+5x+1000,Q=-+45. (1)该厂生产并售出x吨,写出这种产品所获利润W(元)关于x(吨)的函数关系式; (2)当生产多少吨这种产品,并全部售出时,获利最多?这时获利多少元? 这时每吨的价格又是多少元?10.已知抛物线y=2x2-kx-1与x轴两交点的横坐标,一个大于2,另一个小于2,试求k的取值范围.11.如图,在RtABC中,ACB=90,BCAC,以斜边AB 所在直线为x轴,以斜边AB上的高所在直线为y轴,建立直角坐标系,若OA2+OB2= 17, 且线段OA、OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0的两个根. (1)求C点的坐标; (2)以斜边AB为直径作圆与y轴交于另一点E,求过A、B、E 三点的抛物线的关系式,并画出此抛物线的草图. (3)在抛物线上是否存在点P,使ABP与ABC全等?若存在,求出符合条件的P点的坐标;若不存在,说明理由.综合探究12.已知抛物线L;y=ax2+bx+c(其中a、b、c都不等于0), 它的顶点P的坐标是,与y轴的交点是M(0,c)我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线. (1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的关系式: 伴随抛物线的关系式_ 伴随直线的关系式_ (2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3, 则这条抛物线的关系是_: (3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0) 的伴随抛物线和伴随直线的关系式; (4)若抛物线L与x轴交于A(x1,0),B(x2,0)两点x2x10,它的伴随抛物线与x 轴交于C,D两点,且AB=CD,请求出a、b、c应满足的条件.答案:1.(1)a=1;c=4 (2)直线x=, (3)小; ; (4) (5)(1,0);(4,0);(0,4); 6; ; (6)x4;1x;2.(1)由表知,当x=0时,ax2+bx+c=3;当x=1时,ax2=1;当x=2时,ax2+bx+c=3., a=1,b=-2,c=3,空格内分别应填入0,4,2. (2)在x2-2x+3=0中,=(-2)2-413=-80.3.:在同一坐标系中如答图所示,画出函数y=x2的图象,画出函数y=x+3 的图象,这两个图象的交点为A,B,交点A,B的横坐标和2就是方程x2=x+3的解.4.:(1)y=x2+bx+c,把A(-5,0),B(-1,0)代入上式,得, y=. (2)y= 顶点坐标为(-3,2),欲使函数的图象与x轴只有一个交点,应向下平移2个单位.5.:(1)函数的图象如答图所示. (2)图象可看成是一条抛物线这个函数可看作二次函数. (3)设所求函数关系式为:s=av2+bv+c,把v=48,s=22.5;v=64,s=36;v=96,s=72分别代入s=av2+bv+c,得, 解得.(4)当v=80时, s=52.5, 当v=112时, s=94.5, 经检验,所得结论是正确的.6.:(1)如答图所示. y=x-2,AD=BC=2,设C点坐标为(m,2),把C(m,2)代入y=x-2,2=m-2.m=4.C(4,2),OB=4,AB=3.OA=4-3=1,A(1,0),B(4,0),C(4,2),D(1,2). (2)y=x-2,令x=0,得y=-2,E(0,-2).设经过E(0,-2),A(1,0),B(4,0) 三点的抛物线关系式为y=ax2+bx+c, 解得 y=.(3)抛物线顶点在矩形ABCD内部.y=, 顶点为. , 顶点 在矩形ABCD内部.7.(1)解:设所求抛物线的关系式为y=ax2+bx+c, A(0,3),B(4,6),对称轴是直线x=. , 解得 y=. (2)证明:令y=0,得=0, A(0,3),取A点关于x轴的对称点E,E (0,-3).设直线BE的关系式为y=kx-3,把B(4,6)代入上式,得6=4k-3,k=,y=x-3 .由 x-3=0,得x= . 故C为,C点与抛物线在x轴上的一个交点重合,在x轴上任取一点D,在BED中,BE BD+DE.又BE=EC+BC,EC=AC,ED=AD,AC+BCAD+BD.若D与C重合,则AC+BC=AD+BD. AC+BCAD+BD.8:(1)图中各点字母表示如答图所示.OA=2.5,AB=4,OB=4-2.5=1.5.点D坐标为(1.5,3.05). 抛物线顶点坐标(0,3.5),设所求抛物线的关系式为y=ax2+3.5,把D(1.5, 3.05)代入上式,得3.05=a1.52+3.5,a=-0. 2,y=-0.2x2+3.5 (2)OA=2.5,设C点坐标为(2.5,m),把C(2.5,m)代入y=-0.2x2+3.5,得m=- 0.22.52+3.5=2.25. 该运动员跳离地面高度h=m-(1.8+0.25)=2.25-(1.8+0.25)=0.2(m).9:(1)P=x2+5x+1000,Q=-+45. W=Qx-P=(-+45)-(x2+5x+1000)= . (2)W=-(x-150)2+2000. -0,无论k为何实数, 抛物线y=2x2-kx-1与x轴恒有两个交点.设y=2x2-kx-1与x轴两交点的横坐标分别为x1,x2,且规定x1 2, x1-20. (x1-2)(x2-2)0,x1x2-2(x1+x2)+4. k的取值范围为k. 法二:抛物线y=2x2-kx-1与x轴两交点横坐标一个大于2,另一个小于2,此函数的图象大致位置如答图所示.由图象知:当x=2时,y0. 即y=222-2k-1.k的取值范围为k.11:(1)线段OA,OB的长度是关于x的一元二次方程x2-mx+2(m-3)=0 的两个根, 又OA2+OB2=17,(OA+OB)2-2OAOB=17. 把,代入,得m2-4(m-3) =17,m2-4m-5=0.解之,得m=-1或m=5.又知OA+OB=m0,m=-1应舍去. 当m=5时,得方程:x2-5x+4=0,解之,得x=1或x=4. BCAC,OBOA,OA=1,OB=4,在RtABC中,ACB=90,COAB,OC2=OAOB=14=4.OC=2,C(0,2) (2)OA=1,OB=4,C,E两点关于x轴对称, A(-1,0),B(4,0),E(0,-2). 设经过A,B,E三点的抛物线的关系式为 y=ax2+bx+c,则 ,解之,得 所求抛物线关系式为y=. (3)存在.点E是抛物线与圆的交点. RtACBRtAEB,E(0,-2)符合条件. 圆心的坐标(,0 )在抛物线的对称轴上. 这个圆和这条抛物线均关于抛物线的对称轴对称. 点E关于抛物线对称轴的对称点E也符合题意. 可求得E(3,-2). 抛物线上存在点P符合题意,它们的坐标是(0,-2)和(3,-2)12.(1)y=-2x2+1,y=-2x+1. (2)y=x2-2x-3 (3)伴随抛物线的顶点是(0,c), 设它的解析式为y=m(x-0)2+c(m0). 设抛物线过P, 解得m=-a,伴随抛物线关系式为y=-ax2+c. 设伴随直线关系式为y=kx+c(k0). P在此直线上, k=. 伴随直线关系式为y=x+c (4)抛物线L与x轴有两交点,1=b2-4ac0,b2x10,x1+ x2= -0,x1x2=0,ab0.对于伴随抛物线y=-ax2+c,有2=02-(-4ac)=4ac0.由-ax2+c=0,得x=.,CD=2. 又AB=x2-x1=. 由AB=CD,得 =2, 整理得b2=8ac,综合b24ac,ab0,b2=8ac,得a,b,c满足的条件为b2=8ac且ab0,(或b2=8ac且bc0.图1图24.某一元二次方程的两个根分别为x1=2,x2=5,请写出一个经过点(2,0),(5,0)两点二次函数的表达式:_.(写出一个符合要求的即可)5.不论自变量x取什么实数,二次函数y=2x26x+m的函数值总是正值,你认为m的取值范围是_,此时关于一元二次方程2x26x+m=0的解的情况是_(填“有解”或“无解”).6.某一抛物线开口向下,且与x轴无交点,则具有这样性质的抛物线的表达式可能为_(只写一个),此类函数都有_值(填“最大”“最小”).7.如图2,一小孩将一只皮球从A处抛出去,它所经过的路线是某个二次函数图象的一部分,如果他的出手处A距地面的距离OA为1 m,球路的最高点B(8,9),则这个二次函数的表达式为_,小孩将球抛出了约_米(精确到0.1 m).8.若抛物线y=x2(2k+1)x+k2+2,与x轴有两个交点,则整数k的最小值是_.9.已知二次函数y=ax2+bx+c(a0)的图象如图1所示,由抛物线的特征你能得到含有a、b、c三个字母的等式或不等式为_(写出一个即可).10.等腰梯形的周长为60 cm,底角为60,当梯形腰x=_时,梯形面积最大,等于_.11.找出能反映下列各情景中两个变量间关系的图象,并将代号填在相应的横线上.(1)一辆匀速行驶的汽车,其速度与时间的关系.对应的图象是_.(2)正方形的面积与边长之间的关系.对应的图象是_.(3)用一定长度的铁丝围成一个长方形,长方形的面积与其中一边的长之间的关系.对应的图象是_.(4)在220 V电压下,电流强度与电阻之间的关系.对应的图象是_.12.将进货单价为70元的某种商品按零售价100元售出时,每天能卖出20个.若这种商品的 零售价在一定范围内每降价1元,其日销售量就增加了1个,为了获得最大利润,则应降价_元,最大利润为_元.13.关于二次函数y=ax2+bx+c的图象有下列命题,其中是假命题的个数是( )当c=0时,函数的图象经过原点; 当b=0时,函数的图象关于y轴对称; 函数的图象最高点的纵坐标是;当c0且函数的图象开口向下时,方程ax2+bx+c=0必有两个不相等的实根( )A.0个 B.1个 C.2个 D.3个14.已知抛物线y=ax2+bx+c如图所示,则关于x的方程ax2+bx+c8=0的根的情况是A.有两个不相等的正实数根; B.有两个异号实数根;C.有两个相等的实数根;D.没有实数根.15.抛物线y=kx27x7的图象和x轴有交点,则k的取值范围是( )A.k;B.k且k0; C.k;D.k且k016.如图6所示,在一个直角三角形的内部作一个长方形ABCD,其中AB和BC分别在两直角边上,设AB=x m,长方形的面积为y m2,要使长方形的面积最大,其边长x应为( )A. m B.6 m C.15 m D. m 图4图5 图6 17.二次函数y=x24x+3的图象交x轴于A、B两点,交y轴于点C,ABC的面积为( )A.1 B.3 C.4 D.618.无论m为任何实数,二次函数y=x2+(2m)x+m的图象总过的点是( )A.(1,0);B.(1,0)C.(1,3) ;D.(1,3)19.为了备战2008奥运会,中国足球队在某次训练中,一队员在距离球门12米处的挑射,正好从2.4米高(球门横梁底侧高)入网.若足球运行的路线是抛物线y=ax2+bx+c(如图5所示),则下列结论正确的是( )a a0 0b1 B.m1 C.m1 D.m122.如图7,一次函数y=2x+3的图象与x、y轴分别相交于A、C两点,二次函数y=x2+bx+c的图象过点c且与一次函数在第二象限交于另一点B,若ACCB=12,那么,这个二次函数的顶点坐标为( )A.(,) B.(,) C.(,) D.(,)23.某乡镇企业现在年产值是15万元,如果每增加100元投资,一年增加250元产值,那么总产值y(万元)与新增加的投资额x(万元)之间函数关系为( )A.y=25x+15 B.y=2.5x+1.5 C.y=2.5x+15 D.y=25x+1.524.如图8,铅球运动员掷铅球的高度y(m)与水平距离x(m)之间的函数关系式是y=x2+x+,则该运动员此次掷铅球的成绩是( )A.6 m B.12 m C.8 m D.10 m图7图8图925.某幢建筑物,从10 m高的窗口A,用水管向外喷水,喷出的水流呈抛物线状(抛物线所在的平面与墙面垂直,如图9,如果抛物线的最高点M离墙1 m,离地面m,则水流落地点B离墙的距离OB是( )A.2 m B.3 m C.4 m D.5 m26.求下列二次函数的图像与x轴的交点坐标,并作草图验证. (1)y=x2+x+1; (2)y=4x2-8x+4; (3)y=-3x2-6x-3; (4)y=-3x2-x+427.一元二次方程x2+7x+9=1的根与二次函数y=x2+7x+9的图像有什么关系? 试把方程的根在图像上表示出来.28.利用二次函数的图像求下列一元二次方程的根. (1)4x2-8x+1=0; (2)x2-2x-5=0;(3)2x2-6x+3=0; (3)x2-x-1=0.29.已知二次函数y=-x2+4x-3,其图像与y轴交于点B,与x轴交于A, C 两点. 求ABC的周长和面积.能力提升30.某商场以每件20元的价格购进一种商品,试销中发现,这种商品每天的销售量m(件)与每件的销售价x(元)满足关系:m=1402x.(1)写出商场卖这种商品每天的销售利润y与每件的销售价x间的函数关系式;(2)如果商场要想每天获得最大的销售利润,每件商品的售价定为多少最合适?最大销售利润为多少?31.已知二次函数y=(m22)x24mx+n的图象的对称轴是x=2,且最高点在直线y=x+1上,求这个二次函数的表达式.32.如图,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50 m长的篱笆围成中间有一道篱笆隔墙的养鸡场,设它的长度为x m. (1)要使鸡场面积最大,鸡场的长度应为多少m?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少m?比较(1)(2)的结果,你能得到什么结论?33.当运动中的汽车撞到物体时,汽车所受到的损坏程度可以用“撞击影响”来衡量.某型汽车的撞击影响可以用公式I=2v2来表示,其中v(千米/分)表示汽车的速度;(1)列表表示I与v的关系.(2)当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的多少倍?34.如图7,一位运动员在距篮下4米处跳起投篮,球运行的路线是抛物线,当球运行的水平距离为2.5米时,达到最大高度3.5米,然后准确落入篮圈.已知篮圈中心到地面的距离为3.05米. (1)建立如图所示的直角坐标系,求抛物线的表达式;(2)该运动员身高1.8米,在这次跳投中,球在头顶上方0.25米处出手,问:球出手时,他跳离地面的高度是多少.35.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历了从亏损到盈利的过程,下面的二次函数的图象(部分)刻画了该公司年初以来累积利润S(万元)与销售时间t(月)之间的关系(即前t个月的利润总和S与t之间的关系).(1)根据图象你可获得哪些关于该公司的具体信息?(至少写出三条)(2)还能提出其他相关的问题吗?若不能,说明理由;若能,进行解答,并与同伴交流.36.把一个数m分解为两数之和,何时它们的乘积最大?你能得出一个一般性的结论吗?综合探究37.有一种螃蟹,从海上捕获后不放养,最多只能存活两天.如果放养在塘内,可以延长存活时间,但每天也有一定数量的蟹死去.假设放养期内蟹的个体质量基本保持不变,现有一经销商,按市场价收购这种活蟹1000 kg放养在塘内,此时市场价为每千克30元,据测算,此后每千克活蟹的市场价每天可上升1元,但是,放养一天需支出各种费用为400元,且平均每天还有10 kg蟹死去,假定死蟹均于当天全部销售出,售价都是每千克20元.(1)设x天后每千克活蟹的市场价为p元,写出p关于x的函数关系式;(2)如果放养x天后将活蟹一次性出售,并记1000 kg蟹的销售总额为Q元,写出Q关于x的函数关系式.(3)该经销商将这批蟹放养多少天后出售,可获最大利润(利润=Q收购总额)?38.图中a是棱长为a的小正方体,图b、图c由这样的小正方体摆放而成,按照这样的方法继续摆放,自上而下分别叫第一层,第二层,第n层,第n层的小正方形的个数记为S,解答下列问题: (1)按照要求填表:n1234S136(2)写出当n=10时,S=_;(3)根据上表中的数据,把S作为纵坐标,n作为横坐标,在平面直角坐标系中描出相应的各点;(4)请你猜一猜上述各点会在某一个函数图象上吗?如果在某一函数的图象上,求出该函数的表达式;若不在,说明理由.参考答案1.2 2. 大 没有 3.x22x 3或1 2 4. y=x23x10 5. m 无解 6.y=x2+x1 最大7.y=x2+2x+1 16.58. 2 9.b24ac0(不唯一)10 . 15 cm cm2 11.(1)A (2)D (3)C (4)B 12. 5 62513.B 14.C 15.B 16.D 17.B 18.D 19.B20.B 21.B 22.A 23.C 24.D25.B提示:设水流的解析式为y=a(xh)2+k,A(0,10),M(1,).y=a(x1)2+,10=a+.a=.y=(x1)2+.令y=0得x=1或x=3得B(3,0),即B点离墙的距离OB是3 m26.(1)没有交点;(2)有一个交点(1,0);(3)有一个交点(-1,0);(4)有两个交点( 1,0),(,0),草图略.27.该方程的根是该函数的图像与直线y=1的交点的横坐标. 28.(1)x11.9,x20.1;(2)x13.4,x2-1.4;(3)x12.7,x20.6;(4)x11.6,x2-0 .629.令x=0,得y=-3,故B点坐标为(0,-3). 解方程-x2+4x-3=0,得x1=1,x2=3. 故A、C两点的坐标为(1,0),(3,0). 所以AC=3-1=2,AB=,BC=, OB=-3=3. CABC=AB+BC+AC=. SABC=ACOB=23=3.30(1)y=2x2+180x2800.(2)y=2x2+180x2800=2(x290x)2800=2(x45)2+1250.当x=45时,y最大=1250.每件商品售价定为45元最合适,此销售利润最大,为1250元.31二次函数的对称轴x=2,此图象顶点的横坐标为2,此点在直线y=x+1上.y=2+1=2.y=(m22)x24mx+n的图象顶点坐标为(2,2).=2.=2.解得m=1或m=2.最高点在直线上,a0,m=1.y=x2+4x+n顶点为(2,2).2=4+8+n.n=2.则y=x2+4x+2.32(1)依题意得鸡场面积y=y=x2+x=(x250x)=(x25)2+,当x=25时,y最大=,即鸡场的长度为25 m时,其面积最大为m2.(2)如中间有几道隔墙,则隔墙长为m.y=x=x2+x=(x250x) =(x25)2+,当x=25时,y最大=,即鸡场的长度为25 m时,鸡场面积为 m2.结论:无论鸡场中间有多少道篱笆隔墙,要使鸡场面积最大,其长都是25 m.33(1)如下表v210123I8202818(2)I=2(2v)2=42v2.当汽车的速度扩大为原来的2倍时,撞击影响扩大为原来的4倍.34(1)设抛物线的表达式为y=ax2+bx+c.由图知图象过以下点:(0,3.5),(1.5,3.05).抛物线的表达式为y=0.2x2+3.5.(2)设球出手时,他跳离地面的高度为h m,则球出手时,球的高度为h+1.8+0.25=(h+2.05) m,h+2.05=0.2(2.5)2+3.5,h=0.2(m).35 (1)信息:1、2月份亏损最多达2万元.前4月份亏盈吃平.前5月份盈利2.5万元.12月份呈亏损增加趋势.2月份以后开始回升.(盈利)4月份以后纯获利(2)问题:6月份利润总和是多少万元?由图可知,抛物线的表达式为y=(x2)22,当x=6时,y=6(万元)(问题不唯一).36设m=a+b y=ab,y=a(ma)=a2+ma=(a)2+,当a=时,y最大值为.结论:当两个数的和一定,这两个数为它们和的一半时,两个数的积最大.37(1)由题意知:p=30+x,(2)由题意知活蟹的销售额为(100010x)(30+x)元,死蟹的销售额为200x元.Q=(100010x)(30+x)+200x=10x2+900x+30000.(3)设总利润为L=Q30000400x=10x2+500x=10(x250x) =10(x25)2+6250.当x=25时,总利润最大,最大利润为6250元.38(1)10 (2)55 (3)(略).(4)经猜想,所描各点均在某二次函数的图象上.设函数的解析式为S=an2+bn+c.由题意知S=222降次-解一元二次方程(第二课时)22.2.1 配方法(2)随堂检测1、将二次三项式x2-4x+1配方后得( )A(x-2)2+3 B(x-2)2-3 C(x+2)2+3 D(x+2)2-32、已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( )A、x2-8x+42=31 B、x2-8x+42=1C、x2+8x+42=1 D、x2-4x+4=-113、代数式的值为0,求x的值4、解下列方程:(1)x2+6x+5=0;(2)2x2+6x-2=0;(3)(1+x)2+2(1+x)-4=0.点拨:上面的方程都能化成x2=p或(mx+n)2=p(p0)的形式,那么可得x=或mx+n=(p0).典例分析用配方法解方程,下面的过程对吗?如果不对,找出错在哪里,并改正解:方程两边都除以2并移项,得,配方,得,即,解得,即分析:配方法中的关键一步是等式两边同时加上一次项系数一半的平方。本题中一次项系数是,因此,等式两边应同时加上或才对解:上面的过程不对,错在配方一步,改正如下:配方,得,即,解得,即课下作业拓展提高1、配方法解方程2x2-x-2=0应把它先变形为( )A、(x-)2= B、(x-)2=0 C、(x-)2= D、(x-)2=2、用配方法解方程x2-x+1=0正确的解法是( )A、(x-)2=,x= B、(x-)2=-,原方程无解C、(x-)2=,x1=+,x2= D、(x-)2=1,x1=,x2=-3、无论x、y取任何实数,多项式的值总是_数4、如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是_5、用配方法解下列方程:(1)x2+4x+1=0;(2)2x2-4x-1=0;(3)9y2-18y-4=0;(4)x2+3=2x.6、如果a、b为实数,满足+b2-12b+36=0,求ab的值体验中考1、(2009年山西太原)用配方法解方程时,原方程应变形为( )A BCD 2、(2009年湖北仙桃)解方程:3、(2008年,陕西)方程的解是( )A B C D4、(2008年,青岛)用配方法解一元二次方程:.参考答案:随堂检测1、B.2、B.3、解:依题意,得,解得4、解:(1)移项,得x2+6x=-5,配方,得x2+6x+32=-5+32,即(x+3)2=4,由此可得:x+3=2,x1=-1,x2=-5(2)移项,得2x2+6x=-2,二次项系数化为1,得x2+3x=-1,配方x2+3x+()2=-1+()2,即(x+)2=,由此可得x+=,x1=-,x2=-(3)去括号整理,得x2+4x-1=0,移项,得x2+4x=1,配方,得(x+2)2=5,由此可得x+2=,x1=-2,x2=-2课下作业拓展提高1、D.2、B.3、正 .4、x-y= 原方程可化为,x-y=.5、解:(1)x1=-2,x2=-2;(2)x1=1+,x2=1-;(3)y1=+1,y2=1-;(4)x1=x2=.6、解:原等式可化为,.体验中考1、 B.分析:本题考查配方,故选B2、解:3、A ,,.故选A.4、解得.222降次-解一元二次方程(第六课时)(习题课)随堂检测1、关于的方程是一元二次方程,则( )A、 B、 C、 D、2、用配方法解下列方程,其中应在左右两边同时加上4的是( )A、 B、 C、 D、3、方程的根是( )A、 B、 C、 D、4、已知是一元二次方程的一个根,则方程的另一个根是_5、用适当的方法解下列方程:(1);(2);(3);(4).典例分析解方程.分析:本题是含有绝对值的方程,可以转化为一元二次方程求解.转化的方法可以不同,请同学们注意转化的技巧.解法一:分类讨论(1)当时,原方程化为,解得:(不合题意,舍去)(2)当时,原方程化为解得:(不合题意,舍去)原方程的解为.解法二:化归换元原方程可化为,令,则(),解得(舍去),当时,原方程的解为.课下作业拓展提高1、方程的解是_2、已知是关于的方程的一个根,则_3、12、写出一个两实数根符号相反的一元二次方程:_4、当代数式的值为7时,代数式的值为( )A、4 B、2 C、-2 D、-45、已知是一元二次方程的实数根,求代数式的值6、阅读材料,解答问题:材料:为解方程,我们可以视为一个整体.然后设,原方程可化为.解得.当时,,即,.当时,,即,.原方程的解为.解答问题:(1)填空:在由原方程得到的过程中利用_法,达到了降次的目的,体现了_的数学思想.(2)解方程.体验中考1、(2009年山西)请你写出一个有一根为1的一元二次方程: 2、(2009年湖北襄樊)如图,在中,于且是一元二次方程的根,则的周长为( )A B C DADCECB3、(2008年,凉山)已知反比例函数,当时,随的增大而增大,则关于的方程的根的情况是( )A有两个正根 B有两个负根C有一个正根一个负根 D没有实数根(提示:本题综合了反比例函数和一元二次方程根与系数的关系两个重要的知识点,请认真思考,细心解答.)4、(2008年,齐齐哈尔)三角形的每条边的长都是方程的根,则三角形的周长是_(点拨:本题综合考查了一元二次方程的解法和三角形的有关知识,特别要注意应用三
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年国防教育知识竞赛题库与答案
- 2025年锅炉工应知应会知识考试题库含答案
- 2025年广西梧州市辅警招聘考试题题库(含参考答案)
- 淮安地生中考试卷及答案
- 工业材料购销合同协议
- 八下思品月考试卷及答案
- 融城医院笔试题目及答案
- 2025年中级经济师考试《农业经济专业知识与实务》试卷及答案
- 成都中考试卷汇编题及答案
- 人力社保笔试题库及答案
- 《岩浆岩岩石学》全套教学课件
- DL∕T 5210.2-2018 电力建设施工质量验收规程 第2部分:锅炉机组
- DL∕T 701-2012 火力发电厂热工自动化术语
- 医学美容技术专业《生理学》课程标准
- 驾校暑期安全生产方案(2篇)
- 小学心理健康教育主题班会活动记录表
- 24春国家开放大学《教育法学》终结性考试(大作业)参考答案
- 多维阅读第6级-Living-in-Space
- 巡检管理制度燃气版
- 新生儿洗胃操作课件
- 肺癌的护理病例讨论课件
评论
0/150
提交评论