高考解析几何万能解题套路模版.doc_第1页
高考解析几何万能解题套路模版.doc_第2页
高考解析几何万能解题套路模版.doc_第3页
高考解析几何万能解题套路模版.doc_第4页
高考解析几何万能解题套路模版.doc_第5页
已阅读5页,还剩4页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

圆锥曲线 解题套路综述高考解析几何解题套路及各步骤操作规则:步骤一:(一表)把题目中的点、直线、曲线这三大类基础几何元素用代数形式表示出来;口诀:见点化点、见直线化直线、见曲线化曲线。1、见点化点:“点”用平面坐标系上的坐标表示,只要是题目中提到的点都要加以坐标化;2、见直线化直线:“直线”用二元一次方程表示,只要是题目中提到的直线都要加以方程化;3、见曲线化曲线:“曲线(圆、椭圆、抛物线、双曲线)”用二元二次方程表示,只要是题目中提到的曲线都要加以方程化。步骤二:(二代)把题目中的点与直线、曲线从属关系用代数形式表示出来;如果某个点在某条直线或曲线上,那么这个点的坐标就可代入这条直线或曲线的方程。口诀:点代入直线、点代入曲线。1、点代入直线:如果某个点在某条直线上,将点的坐标代入这条直线的方程;2、点代入曲线:如果某个点在某条曲线上,将点的坐标代入这条曲线的方程;这样,每代入一次就会得到一个新的方程,方程逐一列出后,这些方程都是获得最后答案的基础,最后就是解方程组的问题了。在方程组的求解中,我们发现一个特殊情况,即如果题目中有两个点在同一条曲线上,将它们的坐标代入曲线方程后能够直接求解的可以直接求解,如果不能直接求解的,则采用下面这套等效规则来处理可以达到同样的处理效果,并让方程组的求解更简单,具体过程:1、点代入这两个点共同所在的直线:把这两个点共同所在直线用点斜式方程(如)表示出来,将这两个点的坐标分别代入这条直线的方程;2、将这条直线的方程代入这条曲线的方程,获得一个一元二次方程;3、把这个一元二次方程的二次项系数不等于零的条件列出来;4、把这个一元二次方程的判别式列出来;5、把这个一元二次方程的根用韦达定理来表示(这里表示出来的实际上就是这两个点的坐标之间的相互关系式)。步骤三:(三译)图形构成特点的代数化,或者说其它附加条件的代数化。前面两个步骤都是高度模式化的,他们构成了解决所有问题的基础。在解析几何题目里,事实上就是附加了一些特殊条件的问题,如我们可以附加两条直线垂直的条件,也可以附加一条直线与一条曲线相切的条件,等等,当然,我们不用太担心,这些条件都是与我们教材上的基本数学概念相对应的,它们分别与一个或一组固定模式的方程相对应,而且,通过少数几条通用规则就可以把所有这些方程罗列出来。而我们要做的,就是针对这些特定条件选择合适的通用规则来列方程。这个步骤涉及的主要通用规则:1、两点的距离2、两个点的对称点3、条直线垂直4、两条直线平行5、两条直线的夹角6、点到直线的距离7、正余弦定理及面积公式8、向量规则9、直线与曲线的位置关系把直线方程代入曲线方程,得形如的一元二次方程:当时,直线与曲线有一个交点;当时,直线与曲线相切;当时,直线与曲线有两个交点;当时,或当时,直线与曲线无交点;这个步骤的处理关键是根据条件的特点选择适当的通用规则组合。步骤四:(四处理)按答案的要求解方程组,把结果转化成答案要求的形式。一般情况步骤1、2、3 完成后,会得到一组方程,而答案就是这组方程组的解。这个步骤就是方程组的求解了,解方程组实际上就是用加减乘除四则混合运算以及乘方、开方等来消除方程的参数。不过,这里我们也给出三条消参的原则:1、把方程中的所有未知量都视为参数。比如,如果某个点的坐标为,而都是未知的,我们把它们都视为方程组的参数。2、消参的原则是,把与答案无关的参数消去,留下与答案有关的参数。或者说在解方程组的时候,用与答案有关的参数来表示与答案无关的参数。3、消参完成后,把结果表示成答案要求的形式。例题1:全国卷理(21)年高文科(22)(本小题满分12分)已知为坐标原点,为椭圆在轴正半轴上的焦点,过且斜率为的直线与交与两点,点满足. (I)证明:点在上;(II)设点关于点的对称点为,证明:四点在同一圆上.例题2:(理数北京卷)已知椭圆:,过点作圆的切线交椭圆于、两点 求椭圆的焦点坐标和离心率; 将表示为的函数,并求的最大值。例题3.(新课标卷第20题)在平面直角坐标系中,已知点,点在直线上,点满足,点的轨迹为曲线。 求的方程。 为上的动点,为在点处的切线,求点到距离的最小值例题4、(理数四川卷)椭圆有两顶点、,过其焦点的直线与椭圆交于、两点,并与轴交于点。直线与直线交于点。 当时,求直线的方程; 当点异于、两点时,求证:为定值。例题5.(理数全国卷第21题)已知为坐标原点,为椭圆:在轴正半轴上的焦点,过且斜率为的直线与交与、两点,点满足 证明:点在上; 设点关于点的对称点为,证明:、四点在同一圆上。答案例题5.理数全国卷第21题解:由已知有由已知有直线的方程为:设、 将直线的方程代入椭圆方程,整理得 其中,恒成立设由已知 在上 由已知有则的中垂线为:设、的中点为则的中垂线为:则的中垂线与的中垂线的交点为到直线的距离为即、四点在同一圆上。例6、理数山东卷第22题已知动直线与椭圆:交于、两不同点,且的面积,其中为坐标原点。 证明:和均为定值。 设线段的中点为,求的最大值; 椭圆上是否存在三点、,使得?若存在,判断的形状;若不存在,请说明理由。解:设直线的方程为: 将直线的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论