11.3 二次根式的除法学案(2).doc_第1页
11.3 二次根式的除法学案(2).doc_第2页
11.3 二次根式的除法学案(2).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

11.3 二次根式的除法学案(2)教学目的1、使学生掌握二次根式的除法。2、使学生会用商的算术平方根的性质及二次根式的除法化简二次根式。3、使学生掌握分母有理化知识,并能利用它进行二次根式的化简及近似计算。教学分析重点:会利用二次根式的除法及商的算术平方根的性质对一些式子进行化简;会进行分母有理化。难点:商的算术平方根与二次根式的除法的关系与应用。运用类比的方法,学习商的算术平方根的性质及二次根式的除法,并用从具体到抽象的方法强化学生对两公式的理解。教学时,应注重二次根式乘除法公式的对比,并复习有关因数分解的知识,多练习,发现问题及时解决。教学过程一、复习1、叙述商的算术平方根的性质: =(a0,b0)。2、计算:(1);(2);(3)(4)(1);(2);(3)(4)。二、新授1、二次根式的除法:引导学生把商的算术平方根的性质: =(a0,b0)反过来,即得到二次根式的除法。(a0,b0),运用这个式子,可以进行简单的二次根式的除法运算。2、例题讲解。例1 计算: (1),(2)。 解:略可以看出,上例中限于能整除的情况,如果是计算时,只写成,意义不大,该怎么办呢?此时,可以把分子与分母都乘以,最后得出:,这样完成了除法运算。所以二次根式除法运算,通常还采用化去分母中根号的方法来进行。把分母中的根号化去叫分母有理化。两个含有二次根式的代数式相乘,如果它们的积不含二次根式,我们说这两个代数式互为有理化因式,如上式中是的有理化因式。例2 把下列各式分母有理化(课本P179例3):例3 把下列各式分母有理化: (1);(2)。本题要强调,先化简,再分母有理化。解:略例4 计算:(1);(2)解:略三、练习 P179练习:1、2。四、小结1、二次根式的除法分为二种情况:能除尽的直接用公式,不能除尽的用分母有理化。2、进行分母有理化前,要先化

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论