DC-AC逆变器_DC-AC逆变器的基本原理.doc_第1页
DC-AC逆变器_DC-AC逆变器的基本原理.doc_第2页
DC-AC逆变器_DC-AC逆变器的基本原理.doc_第3页
DC-AC逆变器_DC-AC逆变器的基本原理.doc_第4页
DC-AC逆变器_DC-AC逆变器的基本原理.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

DC/AC逆变器,DC/AC逆变器的基本原理背景知识: DC/AC逆变技术能够实现直流电能到交流电能的转换,可以从蓄电池、太阳能电池等直流电能变换得到质量较高的、能满足负载对电压和频率要求的交流电能。DC/AC逆变技术在交流电机的传动、不间断电源(UPS)、变频电源、有源滤波器、电网无功补偿器等许多场合得到了广泛的应用。 DC/AC逆变技术的基本原理是通过半导体功率开关器件(例如SCR,GTO,GTR,IGBT和功率MOSFET模块等)的开通和关断作用,把直流电能变换成交流电能,因此是一种电能变换装置。由子是通过半导体功率开关器件的开通和关断来实现电能转换的,因此转换效率比较高。但转换输出的波形却很差,是含有相当多谐波成分的方波。而多数应用场合要求逆变器输出的是理想的正弦波,因此如何利用半导体功率开关器件的开通和关断的转换,使逆变器输出正弦波和准正弦波就成了DC/AC逆变器技术发展中的一个主要问题。 基本原理: 常用逆变器主电路的基本形式有两种分类方法:按照相数分类,可以分为单相和三相;按照直流侧波形和交流侧波形分类,可以分为电压型逆变器和电流型逆变器。具体如下: DC/AC逆变器按拓扑结构划分,分为Buck型DC/AC逆变器,Boost型DC/AC逆变器,Buck-Boost型DC/AC逆变器。 1,Buck型DC/AC逆变器 Buck型DC/AC逆变器电路基本拓扑如图所示。 采用了两组对称的Buck电路,负载跨接在两个Buck变换器的输出端,并以正弦的方式调节Buck变换器的输出电压,进行DC/AC的变换。它包括直流供电电源Vm,输出滤波电感L1和L2,功率开关管S1-S4 。滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。通过滑模控制,使输出电容电压V1和V2随参考电压的变化而变化,从而使两个Buck变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。由于负载跨接在K和代的两端,则DC/AC变换器的输出电压玲为如下式所示的正弦波,图2所示即为逆变器的基本工作原理。 虽然有一个直流偏置电压出现在负载的任一端,但负载两端电压为正负交变的正弦波电压,并且其直流电压为零。由于DC/AC变换器的输出电流是正负交变的,因此要求电路中的Buck变换器的电流能双向流通,如图1所示电路由两组双向Buck变换器组成。一组电流双向流通的Buck变换器可见图3所示。凡与又是一对互补控制的开关管,D1和D2为反并止极管。当开关S1闭合、S2打开时,若电感电流方向为正,则电流流经S1,若为负则电感电流经D1续流。当S1打开、S2闭合时,若电感电流方向为正,则电流经D2续流,若为负则电感电流流经S2。 2,Boost型AC/AC逆变器 Boost型DC/AC逆变器电路基本拓扑如图所示。采用了两组对称的Boost电路,负载跨接在两个Boost变换器的输出端,并以正弦的方式调节Boost变换器的输出电压,进行D/AC的变换。它包括直流供电电Vm,输出滤波电感L1和L2,功率开关管S1-S4,滤波电容C1和C2,续流二极管D1-D4,以及负载电阻R。通过滑模控制,使输出电容电压K和K随参考电压的变化而变化,从而使两个Boost变换器各产生一个有相同直流偏置的正弦波输出电压,并且V1和V2在相位上互差180度。获得的输出电压为V0 = V1-V2,是一个正弦电压。 3,Buck-Boost型DC/AC逆变器。基本原理为上述两种结构的中和,这里就不做太多解释了。 现状和发展: 一般认为,DC-AC逆变器的发展可以分为如下两个阶段。 1,1956-1980年为传统发展阶段。这个阶段的特点是:开关器件以低速器件为主,逆变器的开关频率较低,波形改善以多重叠加为主,体积重量较大,逆变效率低。正弦波逆变器开始出现。1960年以后,人们注意到改善逆变器波形的重要性,并开始进行研究。 1963年,F.G.Turnbull提出了“消除特定谐波法”,为后来的优化PWM法奠定了基础,以实现特定的优化目标,如谐波最小、效率最优、转矩脉动最小等。 1980年到现在为高频化新技术阶段。这个阶段的特点是:开关器件以高速器件为主,逆变器的开关频率较高,波形改善以PWM法为主,体积重量较小,逆变效率高。正弦波逆变器技术发展日趋完善。 20世纪70年代后期,可关断晶闸管GTO、电力晶体管GTR及其模块相继实用化。80年代以来,电力电子技术与微电子技术相结合,产生了多种高频化的全控器件,并得到了迅速发展,如功率场效应晶体管Power MOSFET,绝缘门极晶体管IGT或IGST,静电感应晶体管SIT,静电感应晶闸管SITH、场控晶闸管MCT, MOS晶体管MGT、IEGT以及IGCT等。这就使电力电子技术由传统发展时代进入到高频化时代。在这个时代,具有小型化和高性能特点的新逆变技术层出不穷,特别是脉宽调制波形改善技术得到了飞

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论