高一数学《函数的单调性与最值》第二课时教案.doc_第1页
高一数学《函数的单调性与最值》第二课时教案.doc_第2页
高一数学《函数的单调性与最值》第二课时教案.doc_第3页
高一数学《函数的单调性与最值》第二课时教案.doc_第4页
高一数学《函数的单调性与最值》第二课时教案.doc_第5页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

6函数的单调性与最值 第二课时教学目标:1. 使学生理解函数的最值是在整个定义域上来研究的,它是函数单调性的应用。2. 启发学生学会分析问题,认识问题和创造性的解决问题。3. 通过渗透数形结合的数学思想,对学生进行辩证唯物主义的教育。新知探究知识探究一观察下列两个函数图像:思考1:这两个函数图像有何共同特征:函数图像上最高点的纵坐标叫什么名称?图像均有最高点,图像最高点的纵坐标是所有函数值中的最大值,即函数的最大值。思考2:高函数y=f(x)图像上最高点的纵坐标为M,则对函数定义域内任意自变量x,f(x)与M的大小关系如何?对函数定义域内任意自变量x,均有f(x)M成立。思考3:设函数f(x)=1-,则f(x)2成立吗?f(x)的最大值是2吗?为什么?f(x)2成立,但f(x)的最大值不是2,因为找不到一个自变量x.,使得f(x)=2成立思考4:怎样定义函数f(x)的最大值?用什么符号表示? 一般地,设函数f(x)的定义域为I,如果存在实数M满足:(1) 对于任意的xI,都有f(x)M;(2) 存在xI,使得f(x)=M.那么,我们称M是函数y=f(x)的最大值(maximum value)思考5:函数的最大值是函数值域中的一个元素吗?如果函数f(x)的值域是(a,b),则函数f(x)存在最大值吗?最大值是函数值域中的一个元素,函数图像上有最高点时,这个函数才存在最大值,最高点必须是函数图像上的点,因此若f(x)的值域是(a,b),则f(x)没有最大值。知识探究二观察下列两个函数图像:思考1:这两个函数图像上各有一个最低点,函数图像上最低点的纵坐标叫什么名称? 函数图像上最低点的纵坐标称为函数的最小值。思考2:仿照函数最大值的定义,怎样定义函数f(x)的最小值?一般地,设函数f(x)的定义域为I,如果存在实数M满足:(3) 对于任意的xI,都有f(x) M;(4) 存在xI,使得f(x)=M.那么,我们称M是函数y=f(x)的最小值(minimum value)理论迁移例1 “菊花”烟花是最壮观的烟花之一,制造时一般是期望在它达到最高点时爆裂。如果烟花距地面的高度h米与时间t秒之间的关系为h(t )=-4.9t+14.7t+18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少(精确到1米)?例2 已知函数f(x)=(x2,6),求函数的最大值和最小值。归纳基本初等函数的单调性及最值1. 正比例函数:f(x)=kx(k0),当k0时,f(x)在定义域R上为增函数;当k0时,f(x)在定义域R上为减函数,在定义域R上不存在最值,在闭区间a,b上存在最值,当k0时函数f(x)的最大值为f(b)=kb,最小值为f(a)=ka, 当k0时, ,最大值为f(a)=ka,函数f(x)的最小值为f(b)=kb。2. 反比例函数:f(x)=(k0),在定义域(-,0)(0,+)上无单调性,也不存在最值。当k0时,在(-,0),(0,+)为减函数;当k0时,在(-,0),(0,+)为增函数。在闭区间a,b上,存在最值,当k0时函数f(x)的最小值为f(b)= ,最大值为f(a)=, 当k0时, 函数f(x)的最小值为f(a)= ,最大值为f(b)= 。3. 一次函数:f(x)=kx+b(k0),在定义域R上不存在最值,当k0时,f(x)为R上的增,当k0时,f(x)为R上的减函数,在闭区间m,n上,存在最值,当k0时函数f(x)的最小值为f(m)=km+b,最大值为f(n)=kn+b, 当k0时, 函数f(x)的最小值为f(n)=kn+b,最大值为f(m)=km+b。4. 二次函数:f(x)=ax+bx+c,当a0时,f(x)在(-,-)为减函数,在(-,+)为增函数,在定义域R上有最小值f()=,无最大值。当a0时,f(x)在(-,-)为增函数,在(-,+)为减函数,在定义域R上有最大值f()=,无最小值。二次函数是闭区间上的最值问题是高考考查重点和热点内容之一,我们将在后面的专题中具体讲解。证明函数单调性作差中常用方法例1 证明函数f(x)=x+x在R上是单调增函数。 配方法例2 证明函数f(x)= -在定义域上是减函数。 分子有理化例3 讨论函数f(x)在x(-1,1)上的单调性,其中a为非零常数。 含字母参数时,要讨论参数范围常用结论例4 讨论函数f(x)=的单调性。 总结:1.函数y=-f(x)与函数y=f(-x)的单调性相反。 2. .函数y=f(x)+c与函数y=f(x)的单调性相同。 3.当c0时,函数y=cf(x)与函数y=f(x)的单调性相同,当c0时,函数y=cf(x)与函数y=f(x)的单调性相反。 4.若f(x)0,则函数f(x)与具有相反的单调性。 5.若f(x)0,则函数f(x)与具有相同的单调性。 6.对于函数f(x)与g(x)可以总结为: 增+增增,增减增,减+减减,减增减 7.当函数f(x)和g(x)的单调性相同时,复合函数y=fg(x)是增函数;当函数f(x)和g(x)的单调性相反时,复合函数y=fg(x)是减函数。简称为口诀“同增异减”。练习: 1已知y=f(x)与y=g(x)均为增函数,判断下列函数在公共定义域内的单调性。 (1) y=-2f(x) (2) y=f(x)+2g(x) 2. 求函数y=+的最小值。抽象函数的单调性没有具体的函数解析式的函数,我们称为抽象函数,根据题目研究抽象函数的单调性,是一类重要的题型,证明抽象函数的单调性常用定义法;还有一类型的题目是利用抽象函数的单调性求参数范围。例1 已知函数f(x)对任意x,yR,总有f(x)+f(y)=f(x+y),且当x0时,f(x)0,f(1)=-,.(1) 求证f(x)在R上是减函数。(2) 求f(x)在-3,3上的最大值和最小值。例2 已知y=f(x)在定义域(-1,1)上是减函数,且f(1-a)f(a-1),求a的取值范围。 练习:1. 定义域在(0,+)上的函数f(x)满足:(1)f(2)=1; (2) f(xy)=f(x)+f(y); (3) 当xy时,有f(x)f(y),若f(x)+f(x-3)2,求x的取值范围。2. 已知函数f(x)的定义域为R,且f()=2,对任意m ,n都有f(m+n)=f(m)+f(n)-1,当x时,f(x).(1).求f(-)的值。(2)求证f(x)在定义域R上是增函数。函数单调性的应用1.利用函数的单调性比较函数值的大小例1 如果函数f(x)=x+bx+c,对任意实数t都有f(2+t)=f(2-t),比较f(1),f(2),f(4)的大小。例2 已知函数y=f(x)在0,+)上是减函数,试比较f()与f(a-a+1)的大小。2.利用函数的单调性解不等式例3 已知f(x)是定义在R上的单调函数,且f(x)的图像过点A(0,2),和点B(3,0) (1)解方程 f(x)=f(1-x) (2) 解不等式 f(2x)f(1+x) (3) 求适合f(x)2或f(x)0的x的取值范围。3利用函数的单调性求参数的取值范围已知函数的单调性,求函数解析式中参数的范围,是函数单调性的逆向思维问题。这类问题能够加深对概念、性质的理解。例3 已知f(x)=x-2(1-a)x+2在(-,4)上是减函数,求实数a的取值范围。例4 已知A1,b(b),对于函数f(x)=(x-1)+1,若f(x)的定义域和值域都为A,求b的值。练习:已知函数y=f(x)=-x+ax-+在区间0,1上的最大值为2,求实数a的值。求函数值域的一般方法1.二次函数求最值,要注意数形结合与二次函数有关的函数,可以用配方法求值域,但要注意函数的定义域。例1:求函数y=的最大值和最小值。例2:求f(x)=x-2ax+x2,x-1,1,求f(x)的最小值g(a).g(a)=2.形如y=ax+b的形式,可用换元法,即设t,转化成二次函数再求值域,(注意新元t的范围t0)例3:求函数y=x+的值域。3.形如y=(a)型的函数可借助反比例函数求其值域,这种方法也常被称为分离常数法。这种函数的值域为y|y例4:求函数y=的值域。4.利用单调

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论