


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验十一(因子分析)报告一、数据来源各地区年平均收入.sav二、基本结果(1)考察原有变量是否适合进行因子分析首先考察原有变量之间是否存在线性关系,是否采用因子分析提取因子。借助变量的相关系数矩阵、反映像相关矩阵、巴特利球度检验和KMO检验方法进行分析,结果如表1、表2所示:表1原有变量相关系数矩阵 correlation matrix表1显示原有变量的相关系数矩阵,可以看出大部分的相关系数都比较高,各变量呈较强的线性关系,能够从中提取公共因子,适合进行因子分析。表2 KMO and Bartletts Test由表2可知,巴特利特球度检验统计量观测值为182.913,p值接近0,显著性差异,可以认为相关系数矩阵与单位阵有显著差异,同时KMO值为0.882,根据Kaiser给出的KMO度量标准可知原有变量适合进行因子分析。(2)提取因子进行尝试性分析:根据原有变量的相关系数矩阵,采用主成分分析法提取因子并选取大于1的特征值。具体结果见表3:可知,initial一列是因子分析初始解下的共同度,表明如果对原有7个变量采用主成分分析法提取所有特征值,那么原有变量的所有方差都可以被解释,变量的共同度均为1。事实上,因子个数小于原有变量的个数才是因子分析的目的,所以不可以提取全部特征值。第二列表明港澳台经济单位、集体经济单位以及外商投资经济单位等变量的绝大部分信息(大于83%)可被因子解释。但联营经济、其他经济丢失较为严重。因此,本次因子提取的总体效果不理想。表3因子分析中的变量共同度(一)重新制定提取特征值的标准,指定提取2个因子,分析表4:可以看出,此时所有变量的共同度均较高,各个变量的信息丢失较少。因此,本次因子提取的总体效果比较理想。表4因子分析的变量共同度(二)表5中,第一列是因子编号,以后三列组成一组,每组中数据项为特征值、方差贡献率、累计方差贡献率。第一组数据项(2-4列)描述因子分析初始解的情况。在初始解中由于提取了7个因子,因此原有变量的总方差均被解释,累计方差贡献率为100%。第二组(5-7列)描述了因子解的情况。由于指定提取2个因子,2个因子共解释原有变量宗法差的84%,总体上丢失原有信息量较少,因子分析效果理想。第三组(8-10列)描述了最终因子解的情况。因子旋转后,总的累计方差贡献率没有发生改变,也就是没有影响原有变量的共同度,但却重新分配了各个因子的解释原有变量的方差,改变了各因子方差贡献,使得因子更易被解释。表5因子解释原有变量总方差的情况图1中,横坐标为因子数目,纵坐标为特征值。可以看出,第1个因子特征值很
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字藏品行业投资机会研究报告:2025年投资热点与策略
- 基于云计算的铁路能源管理与预测-洞察及研究
- 数字艺术市场交易活跃度2025年研究报告:艺术市场与数字版权交易
- 数字艺术市场交易活跃度2025年分析报告:艺术市场政策影响评估
- 绿色计算封装协同-洞察及研究
- 降排水施工方案评审
- 培训机构活动方案策划表
- 数字孪生技术在2025年智慧城市公共安全应急响应中的应用探索报告
- 出版论坛活动策划方案范文
- 金华员工拓展活动策划方案
- 不交社保劳动合同模板
- 2024年云南省中考数学试题(含答案)
- GB 14102.1-2024防火卷帘第1部分:通用技术条件
- 越野跑策划方案
- 《光学含沙量测量仪率定规范》
- 高考日语应用文写作失物招领寻物启事课件
- 产值计算方案
- 冬季抢工措施方案
- 运用PDCA循环降低急诊科医护人员职业暴露发生率
- 充电桩施工组织设计
- 静脉治疗护理技术操作标准2023
评论
0/150
提交评论