




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
挖井就要挖到水为止!高中数学必修2第二章专题辅导二 垂直1、 斜线和平面所成的角:斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角2、 二面角:(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角3、垂直的定理(1)直线与平面垂直的判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.(2)直线与平面垂直的性质定理: 如果一条直线与一个平面垂直,那么它就与平面内的任何一条直线垂直.如果两条直线同垂直于一个平面,那么这两条直线平行. (3)平面与平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(4)平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点证明:(1)CDAE;(2)PD平面ABE.题型二平面与平面垂直的判定与性质例2(2015江苏)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE. (2015江苏)如图,在四棱锥PABCD中,平面PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD.题型三线面、面面垂直的综合应用例3如图所示,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8,AB2DC4.(1)设M是PC上的一点,求证:平面MBD平面PAD;(2)求四棱锥PABCD的体积 如图所示,已知长方体ABCDA1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点,(1)求证:EF平面ABCD;(2)设M为线段C1C的中点,当的比值为多少时,DF平面D1MB?并说明理由题型四线面角、二面角的求法例4如图,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点(1)求PB和平面PAD所成的角的大小;(2)证明:AE平面PCD;(3)求二面角APDC的正弦值 已知三棱锥SABC中,底面ABC为边长等于2的等边三角形,SA垂直于底面ABC,SA3,求直线AB与平面SBC所成角的正弦值.高中数学必修2第二章专题辅导二1、 斜线和平面所成的角:斜线和它在平面内的射影所成的锐角,叫斜线和平面所成的角2、 二面角:(1)二面角:从一条直线出发的两个半平面所组成的图形叫做二面角(2)二面角的平面角:二面角棱上的一点,在两个半平面内分别作与棱垂直的射线,则两射线所成的角叫做二面角的平面角3、垂直的定理(1)直线与平面垂直的判定定理: 如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直这个平面.(2)直线与平面垂直的性质定理: 如果一条直线与一个平面垂直,那么它就与平面内的任何一条直线垂直.如果两条直线同垂直于一个平面,那么这两条直线平行. (3)平面与平面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.(4)平面与平面垂直的性质定理:如果两个平面互相垂直,那么在一个平面内垂直于他们的交线的直线垂直于另一个平面.题型一直线与平面垂直的判定与性质例1如图所示,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点证明:(1)CDAE;(2)PD平面ABE.证明(1)在四棱锥PABCD中,PA底面ABCD,CD平面ABCD,PACD.ACCD,PAACA,CD平面PAC.而AE平面PAC,CDAE.(2)由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.由(1),知AECD,且PCCDC,AE平面PCD.而PD平面PCD,AEPD.PA底面ABCD,PAAB.又ABAD且PAADA,AB平面PAD,而PD平面PAD,ABPD.又ABAEA,PD平面ABE. 题型二平面与平面垂直的判定与性质例2(2015江苏)如图,在直三棱柱ABCA1B1C1中,A1B1A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且ADDE,F为B1C1的中点求证:(1)平面ADE平面BCC1B1;(2)直线A1F平面ADE.证明(1)因为ABCA1B1C1是直三棱柱,所以CC1平面ABC.又AD平面ABC,所以CC1AD.又因为ADDE,CC1,DE平面BCC1B1,CC1DEE,所以AD平面BCC1B1.又AD平面ADE,所以平面ADE平面BCC1B1.(2)因为A1B1A1C1,F为B1C1的中点,所以A1FB1C1.因为CC1平面A1B1C1,且A1F平面A1B1C1,所以CC1A1F.又因为CC1,B1C1平面BCC1B1,CC1B1C1C1,所以A1F平面BCC1B1.由(1)知AD平面BCC1B1,所以A1FAD.又AD平面ADE,A1F平面ADE,所以A1F平面ADE. (2015江苏)如图,在四棱锥PABCD中,平面PAD平面ABCD,ABAD,BAD60,E,F分别是AP,AD的中点求证:(1)直线EF平面PCD;(2)平面BEF平面PAD.证明(1)如图,在PAD中,因为E,F分别为AP,AD的中点,所以EFPD.又因为EF平面PCD,PD平面PCD,所以直线EF平面PCD.(2)连接BD.因为ABAD,BAD60,所以ABD为正三角形因为F是AD的中点,所以BFAD.因为平面PAD平面ABCD,BF平面ABCD,平面PAD平面ABCDAD,所以BF平面PAD.又因为BF平面BEF,所以平面BEF平面PAD.题型三线面、面面垂直的综合应用例3如图所示,在四棱锥PABCD中,平面PAD平面ABCD,ABDC,PAD是等边三角形,已知BD2AD8,AB2DC4.(1)设M是PC上的一点,求证:平面MBD平面PAD;(2)求四棱锥PABCD的体积思维启迪:(1)因为两平面垂直与M点位置无关,所以在平面MBD内一定有一条直线垂直于平面PAD,考虑证明BD平面PAD.(2)四棱锥底面为一梯形,高为P到面ABCD的距离(1)证明在ABD中,AD4,BD8,AB4,AD2BD2AB2.ADBD.又面PAD面ABCD,面PAD面ABCDAD,BD面ABCD,BD面PAD.又BD面BDM,面MBD面PAD.(2)解过P作POAD,面PAD面ABCD,PO面ABCD,即PO为四棱锥PABCD的高又PAD是边长为4的等边三角形,PO2.在底面四边形ABCD中,ABDC,AB2DC,四边形ABCD为梯形在RtADB中,斜边AB边上的高为,此即为梯形的高S四边形ABCD24.VPABCD24216. 如图所示,已知长方体ABCDA1B1C1D1的底面ABCD为正方形,E为线段AD1的中点,F为线段BD1的中点,(1)求证:EF平面ABCD;(2)设M为线段C1C的中点,当的比值为多少时,DF平面D1MB?并说明理由(1)证明E为线段AD1的中点,F为线段BD1的中点,EFAB.EF平面ABCD,AB平面ABCD,EF平面ABCD.(2)解当时,DF平面D1MB.ABCD是正方形,ACBD.D1D平面ABC,D1DAC.AC平面BB1D1D,ACDF.F,M分别是BD1,CC1的中点,FMAC.DFFM.D1DAD,D1DBD.矩形D1DBB1为正方形F为BD1的中点,DFBD1.FMBD1F,DF平面D1MB.题型四线面角、二面角的求法例4如图,在四棱锥PABCD中,PA底面ABCD,ABAD,ACCD,ABC60,PAABBC,E是PC的中点(1)求PB和平面PAD所成的角的大小;(2)证明AE平面PCD;(3)求二面角APDC的正弦值 (1)解在四棱锥PABCD中,因PA底面ABCD,AB平面ABCD,故PAAB.又ABAD,PAADA,从而AB平面PAD,故PB在平面PAD内的射影为PA,从而APB为PB和平面PAD所成的角在RtPAB中,ABPA,故APB45.所以PB和平面PAD所成的角的大小为45.(2)证明在四棱锥PABCD中,因PA底面ABCD,CD平面ABCD,故CDPA.由条件CDAC,PAACA,CD平面PAC.又AE平面PAC,AECD.由PAABBC,ABC60,可得ACPA.E是PC的中点,AEPC.又PCCDC,综上得AE平面PCD.(3)解过点E作EMPD,垂足为M,连接AM,如图所示由(2)知,AE平面PCD,AM在平面PCD内的射影是EM,则AMPD.因此AME是二面角APDC的平面角由已知,可得CAD30.设ACa,可得PAa,ADa,PDa,AEa.在RtADP中,AMPD,AMPDPAAD,则AMa.在RtAEM中,sinAME.所以二面角APDC的正弦值为. 已知三棱锥SABC中,底面ABC为边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版智能通风排烟系统安装与智能化改造合同文本
- 2025版智能建筑项目施工班组承包服务合同范本
- 2025版全新员工试用期入职劳动合同及福利待遇协议
- 2025年度高性能河沙资源买卖合同
- 2025年度维修保养外包服务合同
- 2025诚意金协议范本:企业项目合作诚意保证金
- 2025版石材及辅料一体化建筑施工总承包合同
- 2025房地产战略合作地产项目工程监理合同
- 2025年度WTO与全球供应链金融服务合同
- 2025年度医院食堂配餐安全责任协议书范本
- 药品效期和近效期药品管理
- 全国灌溉水有效利用系数测算分析技术指导细则(2024修订版)知识培训
- 起搏器围手术期的护理
- 《诊断学意识障碍》课件
- 培训主管技能展示
- 《环境设计工程计量与计价》课件-1.什么是装饰工程预算
- 某露天矿山剥离工程施工组织设计方案
- 艺术家品牌影响力构建-洞察分析
- 孕产妇急救技能考核试卷
- 消防水池及泵房基坑土方开挖方案
- 北师大版(2024新版)七年级上册数学全册教案
评论
0/150
提交评论