发电厂电气部分问答题.doc_第1页
发电厂电气部分问答题.doc_第2页
发电厂电气部分问答题.doc_第3页
发电厂电气部分问答题.doc_第4页
发电厂电气部分问答题.doc_第5页
已阅读5页,还剩46页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章 问答题1、中性点不接地系统发生单相接地时应如何处理?答案:中性点不接地系统发生单相接地时不必停电,应尽快找出故障点,排除故障或将故障线路切除。如果寻找和排除故障的时间将超过二小时,必须考虑停电处理,并提早通知用户。2、小接地短路电流系统发生单相接地时,由,0接线、变比为100.4kV的配电变压器供电的用户为什么不知道系统发生单相接地?答案:因为用户承受的电压是由,0配电变压器的低压侧供给的, 侧各相电压决定于高压侧各相绕组的电压,而侧各相绕组的电压决定于系统提供的线电压。当正常工作情况时,系统提供的线电压对称,侧各相绕组承受了对称的相对系统中性点电压,并等于相对地电压,故侧各相电压及线电压对称,负荷正常工作;当系统发生单相接地,虽然各相的对地电压发生了变化,但系统提供的线电压仍然维持不变,侧各相绕组由于本侧中性点是不接地的,承受的相对中性点电压仍与正常工作情况相同,故侧负荷承受的电压也同正常工作情况,因此用户并不知道系统发生单相接地,只不过系统故障不排除,用户继续工作的时间不能超过二小时。3、为什么额定电流小的交流接触器用双断点结构,而额定电流大的反而用单断点结构?答案:额定电流小的交流接触器采用双断点结构,可以在电流过零时可靠熄弧,无需另装灭弧装置。同时,双断点结构的触头开距小、体积小、没有软连接、冲击能量小、机械寿命高。虽然双断点结构触头压力小,触头接触时无摩擦自清扫作用,而且要用银基合金做材料,但这些缺点影响不大。额定电流大的交流接触器触头压力要大,且由于开断容量大,电弧不易自熄,一定要装设灭弧装置。此时,如还用双断点结构,必然使接触器结构更加复杂,而采用单断点已能满足要求。4、消弧线圈有何作用?答案:消弧线圈的作用是将系统的接地电容电流加以补偿,使接地点的电流补偿到最小值,防止弧光短路扩大事故;同时降低了弧隙电压恢复速率以提高弧隙的绝缘强度,防止电弧重燃造成间歇性弧光接地过电压。中性点经消弧线圈接地的系统又称补偿网络,而补偿原理是基于在接地点的电容电流上迭加一个相位相反的电感电流,使接地电流达到最小值。5、为什么对35kV的电力网,当接地电容电流大于10A时要求装消弧线圈;对310kV的电力网,当接地电流大于 3020A时要求装消弧线圈;而对310kV由由发电机直接供电的电力系统,则接地电流大于A就要装消弧线圈?答案:对于35kV的电力网,当接地电容电流大于 10A时,易产生间歇性的弧光接地谐振过电压,健全相过电压倍数可达2.53倍的相电压峰值,从而危及绝缘裕度不大的该电网设备的绝缘。因此,35kV电力网接地电容电流大于10A时要装消弧线圈,以减少接地电流,防止谐振过电压。 对于310kV电网,当接地电容电流大于 10A时,也会产生谐振过电压,但是该电网设备的绝缘裕度较大,而不至于危及绝缘;但当接地电流大于30A20A时,会形成稳定性的电弧,此时电弧已不能自行熄灭,在风、热力及电动力的作用下而拉长摆动,往往引起多相短路,造成事故而停电。因此,36kV电力网接地电容电流大于30A(10kV电网大于20A)时要装消弧线圈,以减少接地电流,利于消除接地点电弧。 由发电机直接供电的系统,如在机内发生单相接地故障而继续带故障运行时,就可能烧坏定子铁芯而使其不可修复。所以,如要求发电机带故障运行一定时间的话,则接地电容电流一定要小于5A,否则就要在发电机的中性点装设消弧线圈进行补偿,以减少接地电流,防止烧坏发电机。6、消弧线圈为什么能起消弧作用?答案:消弧线圈是安装在不接地系统变压器或发电机形连接线圈的中性点上。当系统发生单相接地时,中性点位移电压作用在消弧线圈上,产生电感电流流过接地点。电容电流与的方向相反,流过故障点的总电流为此两者之差,故可起补偿作用。通过补偿,接地点电流在允许范围之内,不会形成间歇性电弧,因此可以说,消弧线圈起了消弧作用。7、为什么中性点经消弧线圈接地的电力网多采用过补偿方式?答案:实践证明,在同时满足故障点残流和中性点位移电压的要求时,过补偿和欠补偿对灭弧的影响是差不多的。但欠补偿时,因系统频率下降、切除部分线路或线路一相断线等,有可能会形成完全补偿(即接地点残流为零),而造成串联谐振,产生危险的过电压。所以,在正常情况下不宜采用欠补偿的运行方式,而应采用过补偿的运行方式。只有当消弧线圈的容量不足,才允许在一定时间内采用欠补偿的方式运行,但要对可能产生的过电压进行校验。8、为什么消弧线圈要制成许多分接头?答案:流过消弧线圈的电感电流是用来补偿系统单相接地时,通过接地点的电容电流的。而系统电容电流是随运行方式的变化而变化,如投入设备和切除设备都会使对地电容电流发生变化。因此,消弧线圈的电感电流也要相应地改变,以保证接地点电流在允许范围。当消弧线圈制成多个分接头,就可通过改变电感量达到调节电感电流大小的目的。9、为什么消弧线圈的铁芯是带间隙的?答案:消弧线圈是铁芯带间隙的电感线圈,间隙是沿整个铁芯分布的。这样做的目是避免磁饱和,使补偿电流与电压成正比,减少高次谐波分量,得到稳定的电感值。此外,还可以增大消弧线圈的容量。10、为什么消弧线圈要单独安装?为什么也不宜装在由单回路供电的终端变电所?答案:消弧线圈应分散安装,以避免发生事故或停电检修时,造成多台消弧线圈退出运行。由单回路供电的终端变电所也不宜安装消弧线圈,因该回线路跳闸后,终端变电所的消弧线圈就退出运行,系统就得不到该消弧线圈的补偿。11、一个系统采用多台消弧线圈时,为什么额定容量最好不等?答案:当选用多台消弧线圈时,应尽量使其额定容量不等。例如,当补偿电流为200A时,不宜选用两台额定电流为100A的消弧线圈,而应当选用一台150A和一台50A的消弧线圈,这样做有利于调节补偿范围。12、为什么110kV及以上的电力系统为中性点直接接地系统,而335kV的电力系统为中性点不接地系统?而380220V的系统却又是中性点直接接地系统?答案:在高压电力系统中,中性点直接接地时的绝缘水平大约比不接地时降低了20左右,而降低绝缘水平的经济意义则随额定电压的不同而不同。在110kV及以上系统中,变压器及电器的造价大约与试验电压(试验电压加于被试验物时,不应引起击穿或闪络,也不应引起油中发生局部放电)成正比,因此110 kV及以上的系统如果采用中性点直接接地的方式,则变压器及电器的价格也将降低20左右,所以这种高压系统常是接地系统。但在335kV系统中,绝缘投资比例较小,中性点接地没有太大的经济价值,并且还使得单相接地成为短路,接地电流大大增加,所以该系统都采用中性点不接地方式。至于380/220V系统则因它是人们日常生产、生活上方便使用的动力和照明共用的电压系统。13、为什么在煤矿井下禁止供电系统中性点接地?答案:因井下很潮湿,如采用中性点接地系统,则人在偶尔接触一相导体时就有生命危险,同时中性点接地时单相接地短路电流较大,弧光容易引起瓦斯燃烧和爆炸。为了保证矿井的安全,所以在煤矿井下禁止供电系统中性点接地。14、为什么中性点不接地系统发生单相接地时会产生弧光接地过电压,而中性点直接接地系统却不会?答案:在中性点不接地系统中,若单相接地时接地电容电流较大,约大于10A左右,接地点电弧熄灭又重燃,产生间歇性电弧,会引起另两相对地电容与变压器、线路的电感发生振荡,从而产生弧光接地过电压。 在中性点直接接地系统中,单相接地即是单相接地短路,短路电流很大,保护装置立即作用于断路器跳闸,切除该电路。因此它不会产生间歇性电弧,不会出现弧光接地过电压。15、计算电力系统短路时,为什么一般电气元件的额定电压用平均额定电压,而电抗器却例外?答案:在电力系统中,由于线路中存在着电压损失,因此首端电压比末端电压可高达10。为了简化计算,可认为接在同一电压级的所有元件的额定电压都等于其平均额定电压,这样计算造成的误差在允许范围之内。但电抗器则需要考虑实际额定电压,因为电抗器的电抗比其它的元件大得多,对短路电流的影响大,所以在计算短路电流时,要用实际的额定电压才能满足准确度的要求。16、电力系统短路时,为什么电抗器有较大的限流作用?答案:电抗器串联在电路中,正常工作时电抗器的阻抗远小于负载阻抗,仅占电路总阻抗百分只几,限流作用很小,电压降也很小;在短路时负载阻抗接近于零,短路电路中的总阻抗主要是电抗器的阻抗,因而可使电路中短路电流大大减少,故有明显的限流作用。17、不对称短路电流计算方法与对称短路电流计算方法有什么共同点和不同点?答案:三相短路电流的计算即为正序分量电流的计算,它与不对称短路电流正序分量的计算公式相同;而不对称短路电流的计算,必须根据对称分量法计算序电抗和不为零的一个附加电抗,不对称短路电流的实际值为不对称短路电流的正序分量乘以一个不为的电流倍数。18、简要说明电弧形成和熄灭的物理过程。答案:电弧是导电体,但与金属导电性质不同,它属于气体游离导电。因为触头间隙正常充满着绝缘介质,不能导电,只有游离时使触头间隙弧道中充满了自由电子和正离子时,才具备良好的导电性能。 电弧形成的起因是开关电器的触头开始分离时,由于动、静触头间的接触压力不断下降,接触面积不断减少,使接触电阻迅速增大,接触处的温度急剧升高;另一方面,触头刚分离时,由于触头间的距离极小,即使触头间的电压很小,电场强度也很大。上述两个原因使阴极表面向外发射起始自由电子,这种现象前者称热电子发射而后者称强电场发射。电弧形成的重要因素是从阴极表面发射出来的自由电子,在电场力的作用下向阳极作加速运动且自由行程较大时将获得大的动能,当它与前方中性质点相撞时就能把其撞裂为自由电子和正离子,连续碰撞游离的结果,尤如雪崩一样使触头间隙内充满了自由电子和正离子,这种现象称碰撞游离。此时,间隙具有很大的电导,在外加电压作用下,带电粒子作定向运动形成电流而被击穿形成电弧。电弧形成后,维持其稳定燃烧的主要因素是由于处于弧隙高温下的中性质点产生强烈的热运动,它们之间不断碰撞的结果,又可能发生游离,这种现象称热游离。热游离维持电弧稳定持续燃烧。 在触头间隙产生大量带电粒子的同时,还发生带电粒子消失的相反过程即去游离。去游离有复合和扩散两种形式,当去游离作用比游离作用强时,电弧电流将逐渐减少而使电弧熄灭。19、直流电路中,为什么大都采用空气灭弧的开关电器,而不采用油断路器?答案:断开有电感的直流电路,会在电路中产生自感电势,其大小与电流变化速度成正比。如用油断路器断开电路,因其灭弧装置的灭弧能力较强,电弧迅速熄灭,电流极快降为零,此时较大的电流变化率使电路产生很高的自感电势,危及电路和设备的绝缘。因此,直流电路中一般要用灭弧能力不很强的开关。目前多采用在空气中灭弧的开关,如自动空气开关、闸刀开关、接触器等。20、为什么高压断路器都采用多个断口?答案:高压断路器每相有两个或多个串联断口,其作用有(1)可使加在每个断口上的电压降低,从而使弧隙的恢复电压降低(2)可以把电弧分割成多个小电弧段,在相等的触头行程下,多断口的电弧比单断口的电弧拉得较长,从而增大弧隙电阻(3)多断口总的分闸速度增加了,介质恢复速度也就增大。这些使断路器有较好的灭弧性能,所以高压断路器采用多个断口。21、低压开关利用金属灭弧栅熄灭交流电弧和直流电弧的灭弧原理有什么不同?答案:低压交流电弧的灭弧,是利用电弧电流过零时,每一栅片内的短弧由于近阴极效应作用,立即在阴极附近产生150250V的起始介质电强度。若所有短电弧中阴极的介质电强度的总和,永远大于触头间外加的恢复电压,电弧就不再重燃。这就是以近阴极效应的原理为基础的交流短弧灭弧原理。 低压直流电弧的灭弧,是利用每一栅片内维持短弧燃烧的阴极和阳极电压降的总和大于触头的外加电压,电弧就不能维持,来实现灭弧的。这就是以直流电弧特性为基础的直流短弧灭弧原理。22、为什么电气设备的铜铝接头不宜直接连接?答案:以氢为基准,金属物质都有不同的电化序。铝的电化序在氢之前,标准电极电位为1.34V;铜的电化序在氢之后,标准电极电位为0.34V。如把铜和铝用简单的机械方法连接在一起,特别是在潮湿并含盐份的环境中,铜、铝接头就相当于浸泡在电解液中的一对电极,形成电位差为0.34(-1.34)1.68V的原电池。在原电池的作用下,铝会很快丧失电子而被腐蚀掉,从而使电气接头慢慢地松驰,使接触电阻增大。如此恶性循环,直到接头烧毁为止。23、熔断器的铜熔丝上焊上一颗小锡球有什么作用?答案:铜熔丝上焊上一低熔点的小锡球后,由于冶金效应的作用,通过电流时若温度达到锡的熔点,锡球熔化,液态锡与铜作用形成铜锡液态合金。合金的熔点比铜低,电阻率却比铜大几倍,使局部发热剧增。这样可减少熔化时间和熔化系数,改善了铜熔丝的保护特性,并且不致引起熔断器本体长期过热而损坏。24、熔断器的熔丝是否达到其额定电流时即熔断?答案:熔断器的熔丝在接触良好、正常散热时,通过额定电流时是不熔断。如35A以上的熔丝要超过额定电流的1.3倍才熔断。但在实际使用时,因接触和散热不好,并可能有震动,或熔丝装设时受损伤使截面积变小,都有可能使熔丝在额定电流左右就熔断。25、为什么在额定电流大的填充石英砂的熔断器中,其熔丝常用几根并联,而不用一根较粗的熔丝来代替?答案:几根小截面的熔丝在石英砂中熔断时形成了几个并联的电弧,由于石英砂限制了电弧直径的扩展,几条细电弧的温度容易散发,从而能很快熄灭。用一根粗熔丝熔断时电弧的截面也大,冷却较慢对电弧的熄灭不利。因此熔丝常用几根并联。26、为什么有些熔断器的熔管内要填充石英砂,而RM系列熔断器却不要?答案:熔管内填充石英砂是为了利用石英砂构成的狭缝灭弧。电弧在石英砂中燃烧时,电弧与周围的石英砂紧密接触,冷却较好,增强了去游离;也使熔体气化产生的炽热蒸气形成高温高压作用,迅速分散渗入到石英砂的缝隙中凝结,迫使电弧在短路电流未达到冲击值时就完全熄灭。 RM系列熔断器的熔体装在封闭的纤维管内。当熔体熔断时,电弧高温使内壁纤维气化,分解为氢、二氧化碳和水汽,这些气体都有很好的灭弧性能。同时熔管又是封闭的,且容积很小,产生的气体被电弧强烈加热,管内压力迅速增大,去游离加强,也在短路电流达到最大冲击值之前就可熄弧。故RM系列熔断器不用石英砂作填料,这样还可使其体积小巧。27、为什么熔断器中石英砂颗粒大小对灭弧性能有影响?答案:石英砂的颗粒太小时缝隙小,电弧的渗透能力大为减低,失去对电弧的冷却作用,使电弧能量集中在熔丝附近的石英砂上,以致附近石英砂被熔融,形成液态玻璃并与熔化的金属蒸汽结合,变为金属硅酸块,这种物质的电阻比石英砂小得多,形成了导电路径,电弧不易熄灭。若石英砂颗粒太大缝隙大,虽然电弧能获得较好的渗透性,但整个填料的冷却表面积相对减小,没有足够的面积冷却电弧和吸收电弧能量。所以,石英砂颗粒大小应适当。28、为什么低压熔断器的熔体的额定电流等级较多,而熔管的额定电流等级较少?答案:为配合不同电路负荷电流的需要,熔断器熔体的额定电流等级较多。因等级越多,选用越易合理。熔体是装于绝缘熔管内的,一个绝缘熔管内可以配用不同额定电流的熔体,这样既可满足要求,又可减少熔管的规格,便于生产。因此,熔断器熔体的额定电流等级较多,熔管的额定电流等级较少。29、为什么螺旋式熔断器的螺壳中心端应接在电源进线上,而与螺壳相连的端子应接在熔断器的出线上?答案:螺旋式熔断器的熔芯是接在两个接线端子之间的。若将电源进线和螺壳中心相连,出线和螺壳相连,在安装熔芯和检修时,一旦有金属工具等物体碰壳体造成短路,则熔芯就会及时熔断,避免事故的扩大。如端子接反,而螺壳又较容易与外界触及,当发生以上情况时,就无熔芯保护了。30、低熔点的熔体和高熔点的熔体有什么不同?为什么低熔点的熔体适用于开断小的短路电流,而高熔点的熔体适用于开断大的短路电流?答案:低熔点的熔体主要是铅、锌及铅锡合金等,其工作温度与熔化温度相差不大,熔化系数较小,开断能力也比较小。这是因为在长度和电阻都一定的条件下,低熔点的电阻率较大,熔体截面积势必相应地增大,在开断电弧时,弧隙中金属蒸汽的含量必然很大,会降低开断能力。所以低熔点的熔体只适用于短路电流不大的线路末端作保护电器。高熔点的熔体主要有铜和银,其工作温度与熔化温度相差很大,熔化系数很大。由于其电阻率低,使用时熔体的截面很小,具有较大的开断能力。所以高熔点的熔体适用于要求熔断时间短、开断能力强的电路。31、怎样判定熔断器是过载熔断,还是短路熔断?答案:过载电流比额定电流大,但比短路电流小得多,引起熔体熔断的时间较长在小截面处积聚热量多,故多在小截面处熔断,且熔断断口较短。短路电流比过载电流大得多,熔体熔断较快,熔断断口较长,甚至大截面部位也全部熔完。32、1000V以上的高压熔断器为什么不采用铅、铅锡合金及锌制成的熔件?答案:因为铅、铅锡合金及锌的电阻率较大,由它们制成的熔件截面积较大,特别是当熔件额定电流较大时,采用的大截面熔件熔化会产生大量的金属蒸汽,形成大面积电弧,不易熄灭,甚至引起熔断器爆炸而造成相间短路事故。因此高压熔断器中不采用铅、铅锡合金及锌制成的熔件,这类熔件只能用在500V及以下的低压熔断器中。33、RN系列高压熔断器为什么不采用铅锌作熔件,而要采用铜丝作熔件,有的还要绕在陶瓷芯上?答案:RN系列熔断器的熔管内填充石英砂,当熔件熔断产生电弧和高温时,熔化的金属蒸汽立即在石英砂中形成小洞。若采用铅或锌作熔件,因其截面较大,石英砂中形成的小洞的直径也大,产生的金属蒸汽也多,所以灭弧困难;反之如用铜丝作熔件,因其截面小,在石英砂中形成的孔洞小,产生的金属蒸汽也少,冷却复合效果好,容易灭弧。 当熔件的额定电流不大于7.5A时,铜丝较细,不易固定在正确位置上,也容易被填入的石英砂挤断,因此一般将铜丝绕在陶瓷芯上。只要陶瓷芯固定好就能保持熔件在管内的正确位置,以利熄弧。34、为什么RN2型高压熔断器专用于电压互感器的短路保护,而不能起过载保护作用?答案:RN2型高压熔断器的熔件的额定电流为0.5A,是满足机械强度要求所能选取的最小截面,但其额定电流仍比电压互感器的最大一次电流大许多倍,所以不能起过载保护作用。因此,35kV及以下电压互感器高压侧使用的熔断器仅作互感器本身(匝间短路可能不熔断)以及互感器与母线连接线的短路保护。35、装于高压电压互感器的高压侧和低压侧的熔断器,它们的作用是否相同?答案:不同。一般低压侧装的低压熔断器的熔丝额定电流不大于2A,用以防止低压侧电路的过载或短路;而高压侧熔断器一般选用限流型,熔丝额定电流规格最小只有0.5A,此系按其机械强度所能选取的最小截面积,但是仍比互感器的一次额定电流大许多倍,所以不能用它来保护过载,而只能用于限制短路电流,起短路保护作用。36、为什么一般熔断器都装在户内,而跌落式熔断器则不宜装于户内?答案:普通熔断器的熔丝在熔断时,电弧及气体不会从熔断器里喷出,安全可靠至于跌落式熔断器熔丝熔断时,便有电弧从熔管里喷出来,可能伤害维修人员发生故障或引起火灾,因此不宜安装于户内。37、为什么低压电器灭弧室的灭弧栅片用铁片而不用铜片?答案:灭弧室的灭弧栅片的作用是将电弧拉入栅片,分割成若干短弧,利用短弧的灭弧原理来灭弧。采用金属灭弧栅,首先可使电弧尽快地进入栅片。铁片是导磁体,对电弧有吸引作用,可迅速将电弧拉入灭弧栅,使电弧熄灭。铜片不是导磁体,不能吸引电弧,灭弧效果差。为了防锈和增强传热性能,铁片可做镀锌或镀铜处理。38、为什么低压组合开关不能用于cos0.3以下的电路中?答案:因为组合开关的结构小巧、触点容量小、开距也不大,如果电路功率因数cos0.3,因负载电感较大,当开断电路时,会产生较大过电压(即自感电势),造成触点熄弧困难,以致烧坏开关。所以,cos0.3的电路中不使用组合开关。39、接触器触头表面有一层黑色的薄膜,是否要去掉?答案:不必去掉。黑色薄膜是含银触头生成的氧化膜,这层氧化膜的接触电阻很低,不但不会使触头接触不良,反而能起保护触头的作用。40、在用两只交流接触器的可逆起动电路中,只用正反转起动按钮互锁时,为什么两只接触器还会同时吸合而造成电源短路事故?答案:在正反转起动按钮已作互锁的可逆起动器中,接触器一般能正常工作。但有时因触头熔焊或机械卡死等原因,使其中一只接触器不能释放,这时再起动另一只接触器就会造成电源短路。因为其中一只接触器的互锁按钮的常闭触点在起动后已经复位,失去了互锁作用,再按下另一只按钮时,对应的接触器线圈照样得电而闭合。所以,只有按钮互锁的控制回路是不够完善的。如在两个接触器线圈回路中都分别串接另一只接触器的常闭辅助接点,这样既有按钮互锁,又有辅助触点互锁,这样的控制回路就可防止上述事故的发生。41、在采用磁力起动器的380V低压电路中,已有热继电器作过载保护,为什么还要串接熔断器?答案:磁力起动器中装设有热继电器,在额定电流通过时,热继电器的双金属片不会弯曲变形;在过载时,双金属片就会弯曲变形,使其的一对常闭接点断开而切断电路。因双金属片升温和膨胀变形需要一定时间(约需过载20分钟),不能瞬时动作,故热继电器只能作过载保护。为此,磁力起动器需要串接熔断器,来起短路保护作用。42、为什么在采用交流接触器控制电动机的电路中,必须采用热继电器来保护电动机过载,而不能采用熔断器?答案:因为由于起动电流的影响,熔断器熔件的额定电流必须选择得远大于电动机的额定电流,所以熔断器只用来保护短路,而不能保护过载。热继电器系按电动机的额定电流整定的,当通过的过载电流超过整定值达20分钟以上时,继电器动作,切除电路。因此,可用热继电器来保护电动机的过载和单相运行。43、为什么异步电动机过载保护用的热继电器,有时用两相式而有时用三相式?答案:对于三相星形接法的电动机,在运行时如电动机发生一相断线,另两相的电流会同时增大,因此可用两相式热继电器进行保护;而对于三相三角形接法的电动机,在运行时如电动机发生一相断线,仅一相的电流会增大,若仍使用两相式热继电器,则过载电流有可能不流过热继电器而起不到保护作用,因此采用这种接法时,必须使用三相式热继电器。44、为什么有的自动空气开关的触头由三个触头组成?答案:额定电流大的自动空气开关每一极的动触头由主触头、弧触头和副触头并联组成。主触头接触部分镶有银块,主要通过额定电流;弧触头由耐弧的银钨粉末制成,用来保护主触头,避免主触头在闭合或断开电流时被电弧烧坏。接通时首先接通弧触头,断开电流时最后断开弧触头。在主触头与弧触头中间并联一个副触头,是为防止触头断开过程中由主触头移到弧触头瞬间压降太大,产生电弧烧坏主触头。45、自动空气开关的主触头和弧触头各用什么材料制成的?答案:因为自动空气开关的主触头是通过主要电流的,所以采用导电好、接触电阻小的银作材料,将银块焊接在导板上。而弧触头主要是接触电弧的,所以必须采用铜钨合金等耐弧材料。46、为什么许多电气触头表面镀银?答案:银是很好的触头材料。镀银触头加热到100时,AgO被分解;加热到200时,Ag2O被分解;加热到300时,硫化物被分解。银触头上的氧化物因受热分解,自动清除,而使触头接触良好,接触电阻减小。因此,银触头的允许温度可以很高,故触头表面镀银。47、低压开关电器中,栅片灭弧室与迷宫式灭弧室熄灭电弧的方式有何不同?答案:栅片灭弧室的栅片由一组钢片组成,并固定在绝缘壁上。断开电路时,电弧被吸入灭弧栅片后切割成数段;在电弧电流过零时,每个短弧将出现150250V的介质强度;当介质强度总和大于电源电压时,电弧熄灭。迷宫式灭弧室内的缝道凸起而弯曲,还能有效地拉长电弧,使电弧与灭弧室壁紧密接触而急剧地冷却,将电弧熄灭。48、自动空气开关和接触器都有远距离控制分、合闸的功能。如需频繁操作,自动空气开关能否代替使用,为什么?答案:不能。因为:接触器机构简单,适用于频繁操作;自动空气开关机构复杂,不适用于频繁操作。从灭弧性能上看,自动空气开关触头材料不如接触器好,电气操作寿命只有200010000次,机械寿命只有7000200000次而接触器的电气寿命为60万次,机械寿命为200300万次。自动空气开关价格比接触器贵得多。因此,在频繁切断的电路中,用自动空气开关代替接触器技术上不满足要求,经济上不合算。49、变压器油在高压油断路器中的主要作用是什么?答案:油断路器中的油主要是用来灭弧的。当断路器切断电流时,动触头与静触头之间产生电弧,由于电弧的高温作用,使油剧烈分解成气体,气体中氢占70左右,它能够迅速地降低弧柱温度和提高极间的绝缘强度。这一特性对熄灭电弧极为有利,所以我们用油作为熄灭电弧的介质。50、提高断路器的分闸速度,为什么能减少电弧重燃的可能性和提高灭弧能力?答案:提高断路器的分闸速度,使相同时间内触头的距离增加较快,与相应的灭弧室配合,在较短的时间内能建立强有力的吹弧作用;另一方面,又能使触头间隙在交流电弧过零后较短的时间内获得较高的绝缘强度,减少电弧重燃的可能性。51、SN10-10型少油断路器在开断大电流与小电流时,其灭弧过程有什么不同?答案:SN10-10型少油断路器在开断大电流时,采用连续横吹原理。在分闸过程中,即在很小引弧距离开启第一横吹弧道时,由于巨大的电弧能量使油激烈汽化,产生较大的压力,同时把电弧压向横吹道,产生强烈的气吹作用,使电弧熄灭。当切断小电流时,由于电弧能量很小,灭弧室内的压力不足以产生有效的横吹。这时,电弧被拉入灭弧室下部的中央孔内,使灭弧室下部油囊内的油汽化成气体。当导电杆离开灭弧室时,这个气体纵向吹动。另外,导电杆向下运动时,在灭弧室内形成附加油流射向电弧。在气体纵吹和机械油吹的联合作用下,促使小电流电弧很快熄灭。52、SN10-10型断路器的灭弧室上端装有逆止阀有何作用,漏装会产生什么后果?答案:当断路器开断时,动静触头一分离就会产生电弧。在电弧高温作用下,油分解成气体,使灭弧室内压力增高。这时逆止阀内的钢珠迅速上升堵住中心孔让电弧继续在近似封闭的空间里燃烧,使灭弧室内压力迅速提高,产生气吹而熄灭电弧,这就是逆止阀的作用。 如果漏装逆止阀,则断路器开断时,电弧产生的高压气流就会从灭弧室上端逆止阀的孔向空间释放,而不能形成高压气流,电弧就不能熄灭,断路器就可能被烧毁。53、SN10-10型油断路器的上部为什么要有不充油的空间? 如这个空间的体积过小会造成什么后果?答案:油断路器上部不充油的空间称为缓冲空间。当灭弧室产生的油气穿过油层进入缓冲空间后,油气在缓冲空间靠体积膨胀得到充分冷却,然后才经油气分离器排往大气,故不致引起自燃和降低外部绝缘。 若缓冲空间体积过小,则油气冷却较差,缓冲空间压力过高,可引起上帽炸裂。同时由于缓冲空间压力过高,会使油气不易分离而产生喷油。因此,油断路器不能充油过满而使不充油的空间过小。54、SN10-10型油断路器分闸时,动触杆为何往下运动?答案:SN1010型油断路器分闸时,动触杆往下运动有如下优点:(1)能使电弧根部不断地与新鲜油接触,加快了根部的冷却,使电弧容易熄灭;(2)被电弧高温分解的油气及导电的铜离子、铜蒸汽等迅速向上排出弧道,使弧隙介质强度迅速恢复;(3)断路器下部与导电杆等体积的一部分油,在导电杆下降时被向上挤进灭弧室的附加油通道,起机械吹弧作用,对熄灭小电弧有利;(4)导电杆可做得较短,既节省铜料又提高分闸速度。55、为什么断路器都要有缓冲装置?SN10-10型少油断路器分闸时怎样实现缓冲?答案:断路器分、合闸时,要求导电杆具有足够的分、合闸速度。但往往当导电杆运动到预定的分、合闸位置时,仍剩有很大的惯性(即动能),对机构及断路器冲击很大,故需设有缓冲装置来吸收运动系统的剩余功率。 SN1010油断路器采用的是油缓冲器。断路器分闸时,因导电杆下部有一段是空心的,插入固定在底座上的一个螺杆中,空心杆内孔比螺杆稍大,有小缝隙,因此利用空心杆内的油流过缝隙的阻力来起缓冲作用。56、多油断路器的外壳涂成灰色,而少油断路器的外壳却涂成红色,为什么?答案:多油断路器油箱内的油除作灭弧用外,还作导电部分对外壳的绝缘用,因而正常时,多油断路器的外壳是不带电的。少油断路器的油仅作灭弧用,不作绝缘用,因而少油断路器的外壳是带电的。为提醒人们注意,避免发生触电事故,因此把少油断路器的外壳涂成红色,把多油断路器的外壳涂成灰色。57、DW2-35或DW6-35多油断路器的套管为什么采用型布置,而不采用型布置?答案:空气的绝缘强度比油的绝缘强度低。因此,在相同的电压作用下,在油箱外,由于套管间的距离是空气间隙,所以需要较大的距离才能满足绝缘强度的要求;而在油箱内,由于套管间隙的距离是油间隙,所以距离可以小一些,这样可缩小油箱的体积。对于电压等级较高的断路器,因高度大,套管倾斜安装还可以降低高度,便于安装和运输,故套管都采用型布置。58、为什么六氟化硫断路器具有良好的灭弧性能?答案:六氟化硫(SF6) 具有良好的负电性,它的分子能迅速捕捉自由电子而形成负离子。这些负离子运动非常迟缓,从而使电弧间隙的介质电强度恢复较快,因此有很好的灭弧性能。在大气压力下,六氟化硫的灭弧性能是空气的一百倍并且六氟化硫灭弧后不变质,可重复使用。59、新标准中规定要逐步淘汰油断路器的手动操作机构,为什么?答案:因为电路投入运行前,电气设备或输电线路可能存在故障,甚至处于短路状态,油断路器可能带短路合闸,这就有可能使断路器发生“跳跃”损坏甚至爆炸事故。用手动操作机构合闸,人要在断路器之前操作,对人身安全威胁较大;另外从装设自动重合闸及快速操作等方面考虑,使用手力操作的机构也是不合理的。因此,必须逐步淘汰手动操作机构。60、为什么高压隔离开关的每一极都有两个刀片?答案:高压隔离开关的每一极用两个刀片,当发生短路使两个刀片各通过很大的短路电流时,由于平行导体通过同向电流产生相吸的电动力,以很大的压力紧紧地夹住固定触头。这样,刀片就不会有脱离原位而引起电弧,造成相间短路的危险,并使刀片与固定触头之间更紧密接触,不致因短路电流流过而发生熔焊现象。在正常操作时,由于隔离开关刀片中无电流或电流很小,只需克服弹簧造成的刀片与固定触头间的摩擦力,因此拉、合闸都不困难。61、电气设备检修时,要求隔离开关要有明显的断开点,并在待检修的设备两侧短路接地,以保证工作人员人身安全以及设备安全。由于屋外设备导体部分离地面比较高,悬挂接地软线比较麻烦。若使用带接地刀闸的隔离开关时,当隔离开关打开后,就可使接地刀闸合上,形成三相短路接地,非常方便。62、错误操作隔离开关后应如何处理?答案:(1)错拉隔离开关时,刀闸刚离开静触头便发生电弧,这时应立即合上,就可以消弧,避免事故,若刀闸已全部拉开,则不许将误拉的刀闸再合上:(2)错合隔离开关时,即使合错,甚至在合闸时发生电弧,也不准再拉开,因为带负荷拉刀闸会造成三相弧光短路。63、为什么发电厂和变电所的635kV户内配电装置都采用矩形母线?答案:因为在同样截面下,矩形母线比圆形母线的周界大,即矩形母线的散热面大,因而冷却条件好;同时因为交流电集肤效应的影响,圆形截面母线的电阻要比矩形截面母线的电阻大一些,因此在相同的截面积和允许发热温度下,矩形截面通过的电流要大些。所以,在35kV户内配电装置中一般都采用矩形母线;而在110kV及以上配电装置中,采用矩形母线边角易产生电晕,一般都采用圆形母线。64、为什么在配电装置中,一般都先考虑采用裸母线?答案:因为裸母线具有下述优点:(1)散热条件好,允许载流量大;(2)安装容易;(3)维护简单;(4)成本较低。所以不论户内或户外的配电装置,一般都采用裸母线。65、在交流电路中,为什么一般不采用钢母线,但在有些交流电路和直流电路又采用?答案:钢的电阻率约为铜的68倍,在交流电路中造成很大电压损失和能量损耗,再者钢的导磁性较好,还会造成磁滞和涡流损耗,故交流大容量电路一般如电压互感器和小容量厂用变压器的高压侧。在直流电路中,因不存在磁滞和涡流损耗,故也有采用钢母线的,如蓄电池的直流母线。66、为什么矩形母线并联使用时,每相不能超过三条,而分裂导线可用三条以上的软导线?答案:当工作电流超过单条母线的允许电流时,每相可用两条或三条矩形母线并联固定在支持绝缘子上。为了能较好地散热,条间要保持一定距离,不能迭在一起。但每相条数增加,因受散热条件变差和集肤效应的影响,其允许电流并不成比例增加。例如当每相有三条时,中间一条的电流约占总电流的20,两边的两条各占40。因此,不宜采用每相超过三条的矩形母线。 多根软导线组成的分裂导线,加工和安装容易,不必重迭,可构成多边形排列,所以允许采用四根以上。67、用支持绝缘子固定矩形母线时,两块夹板的材料只能一块是铁,另一块是铜或铝;若两块均是铁,则其紧固螺栓应有一个是铜质,这是为什么?答案:母线运行时,母线电流所产生的强大磁通交链夹板和紧固螺栓,形成闭合回路,导致磁滞涡流损耗,使母线温度升高,影响安全运行。在夹板与螺栓的环路中,只要有一件(夹板或螺栓)是铜或铝质的,因其导磁性能差,就相当于切断了闭合的磁路,从而可提高母线的载流能力。68、为什么用螺栓连接平放的矩形母线时,螺栓由下往上穿?答案:这是为了便于检查。因为由下向上穿时,当母线和螺栓因膨胀系数不一样或者短路时在电动力的作用下而造成母线间有空气间隙等,使螺栓向下落,检查时很快就能及时发现,不致于扩大事故。同时,这种安装方法美观整齐。69、为何两矩形母线用螺栓连接,螺栓拧得过松不好,拧得过紧压力过大也不好?答案:若螺栓过松,接头接触不良,造成发热、烧损,酿成事故;若螺栓过紧压力过大,将导致接触面变形,使接触面减小,接触电阻增大,或螺栓脱牙压力反而减小,也会造成接头发热、烧损,酿成事故。因此,连接螺栓不能过松,也不能过紧,只要其中的弹簧垫圈压平即可。70、为什么母线直线段的长度过大时,要装设伸缩补偿器?答案:当矩形铝母线在2030米之间时,应装设伸缩补偿器。装了补偿器后,则在母线通过电流而发热膨胀时能有伸缩的余地,不致于使瓷瓶受到机械应力而损坏。71、配电装置的裸母线为什么要涂漆?怎样根据颜色来区别母线的极性和相别?答案:一般母线涂漆有三个作用:(1)使工作人员易于识别直流的极性和交流的相别;(2)使散入周围介质的热量稍稍增加,即提高热辐射能力来增大母线的允许载流量;(3)能防锈防腐蚀。直流电:正极为绛色,负极为蓝色;三相交流:A相为黄色,B相为绿色,C相为红色,中性线不接地为紫色、接地为紫色带黑色横条。连接地点、分支地点和接到电器的地点不涂漆。72、为什么屋内配电装置的母线要涂漆,而屋外配电装置的母线则不涂漆?答案:屋内配电装置不受阳光直接照射,故母线涂漆后可提高热辐射能力,增加载流量。涂不同颜色的漆,还可以识别相序,便于操作巡视。屋外配电装置的母线因受阳光直接照射,母线如涂漆,则会增加对太阳能的吸收而降低载流量。若母线不涂漆,表面光亮,可反射太阳能,降低母线的温升,提高载流量。此外,屋外母线多半是绞线,温度变化时伸缩极为显著,表面的涂漆层将迅速遭到破坏,所以屋外配电装置的母线一般均不涂漆。73、为什么瓷瓶表面做成波纹形状?答案:有三个作用;(1)在同样有效高度内延长电弧爬弧距离,且又起到阻断电弧的作用;(2)下雨时起到阻断雨水的作用,使水不能直接从上部流到下部,否则有可能引起接地短路;(3)降落的灰尘在瓷瓶表面凹凸部分分布不均匀,可以增强耐压强度。74、为什么穿墙套管的法兰盘边缘都做成圆弧形,不做成方形或菱形?答案:穿墙套管表面电压分布很不均匀,在中间法兰盘边缘处电场十分集中,很容易从这里开始电晕及滑闪放电。如将法兰盘边缘做成圆弧形,能减弱该处场强,提高电晕和滑闪放电电压,提高套管的绝缘强度。75、为什么户外型穿墙套管一边做成较大的伞裙,而另一边却较小?答案:户外受外界条件影响较大,处于雾、雨、雪及其它污秽环境中。穿墙套管安装于户外的部分伞裙较大,以便增大爬电距离、阻挡电弧、阻截污秽,在雾和雨作用时提高湿闪放电电压,防止击穿造成接地故障。同时伞裙内缘不易进入污秽物,且能保持干燥而得到较高的绝缘强度。穿墙套管安装于户内的部分瓷裙较小,因其不受雾、雨及其它污秽的影响,为减少重量、缩小体积、降低造价,只制成很小的瓷裙。安装时一定要注意不能将穿墙套管装反。76、35kV的瓷套管的内壁喷一层铝有何作用?答案:35kV的瓷套管的内壁与载流芯柱(即导电杆)之间的电场强度大,易发生局部放电。如在瓷套管内壁喷一层铝,并用弹簧片与载流芯柱接触,则两者电位相等,瓷套内的空气就不承受电压,也就不会产生电晕,从而提高了瓷套管的闪络电压。77、为什么电力电缆两端都要装电缆头?电缆头有何作用?答案:电力电缆施工时,每根电缆的两端要剥出一定长度的芯线,以便接到电器和导线上,而剥出芯线处必须装设电缆头,把电缆重新加以绝缘和密封,使整个电缆线路都具有相等的绝缘强度。电缆头的作用有:(1)防止潮气及其它外界有害物质侵入;(2)防止绝缘油的外流而使电缆的绝缘强度降低;(3)防止氧气侵入而使绝缘层变质而击穿;(4)保护电缆两端免受机械损伤。78、为什么敷设油浸纸绝缘电力电缆时,高低差不能过大?答案:敷设油浸纸绝缘电力电缆时如高差过大,会造成油压差过大,使低处外包破裂,易造成低处电缆头密封困难;电缆高处缺油枯干,使绝缘降低,甚至在运行中击穿。因此,垂直或沿陡坡倾斜敷设的610kV油浸纸绝缘电力电缆,其高低差不能超过15米。79、在某一交流电路中并联使用的三根铠装三芯电力电缆,是每根三芯接同一相负荷好还是接三相负荷好?答案:每根接三相负荷好。因为每根三芯接同一相负荷时,电缆的铠装会产生磁滞涡流损耗发热而烧坏绝缘;而每根接三相负荷时,三相总磁通为零,不产生磁滞涡流损耗发热。所以,还是每根三芯电缆接三相负荷好。80、试证明不完全星形接线接线的电流互感器二次中性线上的电流反映了B相的电流。答案:电流互感器采用不完全星形接线方式仅用于小接地短路电流系统,其一次侧三相电流相量和恒等于零即,所以二次侧三相电流和也恒等于零,即1(),也即(),由此可见,二次中性线上的电流反应了B相的电流。81、什么是电流互感器的极性?什么是减极性和加极性?极性错误有什么危害?答案:规定电流互感器的一次绕组的首端标为L1,末端标为L2;二次绕组的首端标为K1,末端标为K2。在接线中,L1和K1、L2和K2两两为同极性端。假定一次电流从L1流入,从L2流出,感应出的二次电流从K1流出,从K2流入,这种电流互感器的极性称为减极性;反之将K1与K2换位时称加极性。在使用中,极性错误会引起测量错误或继电保护误动作。82、为什么一台电压互感器的铭牌上标有好几个容量?答案:电压互感器是利用测量二次电压来间接测量一次(高压)电压的。由于测量使用的表计接在二次侧,而被测量的量却是一次侧,这就产生误差。误差随负荷值的大小而改变,所以同一电压互感器在不同准确度等级下的容量不同。额定容量是对应于最高准确度的容量。如果降低准确度使用,容量可增大,最大容量是按线圈长期工作的发热条件确定的。按大于最大容量使用时,无准确度可言,但必须不因发热而损坏互感器。83、电压互感器二次侧为什么不许短路但必须接地?答案:电压互感器本身阻抗很小,如二次短路时,二次通过的电流增大可能会烧毁绕组,因此二次侧必须装设熔断器。当二次侧短路使熔断器熔断时,将影响表计指示以及可能引起继电保护误动作,所以在电压互感器二次回路工作时应特别注意防止短路。 电压互感器二次接地属于保护接地,主要是防止一、二次绝缘击穿,高压窜入二次侧,危及人身和二次设备绝缘安全。另外,因二次回路绝缘水平低,也会击穿,使绝缘损坏更严重,所以二次侧必须有一点可靠接地。84、电流互感器在运行中为什么不许开路?答案:电流互感器一次绕组电流的大小与二次负荷电流的大小无关。在正常运行时,由于二次负荷阻抗很小,二次侧接近短路状态,一次电流所产生的磁化力大部分被二次电流所抵偿,总磁通密度不大,所以二次绕组电势也不大,一旦开路时二次侧阻抗无限增大,即二次电流等于零,总磁化力等于一次绕组磁化力就是一次电流完全变成了激磁电流,此时铁芯高度饱和,将在二次绕组产生很高的电势,其值可高达几千伏,严重威胁人身安全,或造成二次电气元件绝缘损坏;饱和铁芯的磁滞涡流损耗加剧,将烧毁绕组;铁芯剩磁将影响准确度。85、电流互感器为什么不许长时间过负荷运行?答案:电流互感器过负荷使磁通密度达到饱和或过饱和状态,将使电流互感器误差增大,表计指示不准确,不容易掌握实际负荷情况;另一方面由于磁通密度增大,铁芯磁滞涡流损耗增大,使铁芯和二次绕组过热,绝缘老化,甚至出现损坏等情况。86、互感器的准确度等级是如何规定的?各适用于怎样的供电对象?答案:电流互感器的准确度是以电流误差的百分值规定的,例如0.2级的电流互感器,其最大电流误差不超过百分之零点二。电流互感器的准确度一般分为五级,即0.2、0.5、1、3、10级。电压互感器的准确度是以电压误差的百分值规定的,例如0.2级的电压互感器,其最大电压误差不超过百分之零点二。电压互感器的准确度一般分为四级,即0.2、0,5、1、3级。0.2级一般用于试验室对准确度要求较高的测量;0.5级用于所有计费用的电度表;1级用于一般盘式指示仪表;310级一般用于保护继电器。87、简要回答电压互感器一、二次回路接线有何要求?答案:电压互感器一次侧应该装设能在互感器检修时方便断开电路的隔离开关(低压互感器除外),还应装设能起短路保护作用的熔断器(110kV及以上的互感器外);二次侧应装设起短路保护作用的熔断器或自动空气开关,二次绕组还必须有一点进行可靠的保护接地。88、为什么110kV串级式电压互感器外壳采用瓷套而不采用铁箱?答案:该互感器是由两个相同单元串接在相与地之间的,每个单元上的电压是12Uxg(Uxg为相压)。由于每个单元绕组的中点与铁芯连接,因此绕组两端的线匝对铁芯的绝缘只需按14Uxg设计,两铁芯之间及铁芯与外壳之间都应绝缘。若采用铁箱外壳,则要增加许多绝缘材料,使互感器做得笨重而且造价高。采用瓷套外壳则易于解决铁芯对外壳的绝缘,而且可免去套管绝缘子可以大大缩小体积,降低造价。89、串级式电压互感器的铁芯上为什么要加平衡线圈?答案:平衡线圈的作用是使各单元绕组的电压分布均匀,提高测量准确度。因为二次绕组

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论