




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三节 一 三重积分的概念 二 三重积分的计算 三重积分 第八章 一 三重积分的概念 类似二重积分解决问题的思想 采用 引例 设在空间有限闭区域 内分布着某种不均匀的 物质 求分布在 内的物质的 可得 大化小 常代变 近似和 求极限 解决方法 质量M 密度函数为 定义 设 存在 称为体积元素 若对 作任意分割 任意取点 则称此极限为函数 在 上的三重积分 在直角坐标系下常写作 三重积分的性质与二重积分相似 性质 例如 下列 乘 中值定理 在有界闭域 上连续 则存在 使得 V为 的 体积 积和式 极限 二 三重积分的计算 1 利用直角坐标计算三重积分 方法1 投影法 先一后二 方法2 截面法 先二后一 方法3 三次积分法 先假设连续函数 并将它看作某物体 通过计算该物体的质量引出下列各计算 最后 推广到一般可积函数的积分计算 的密度函数 方法 方法1 投影法 先一后二 该物体的质量为 细长柱体微元的质量为 微元线密度 方法2 截面法 先二后一 为底 dz为高的柱形薄片质量为 该物体的质量为 面密度 投影法 方法3 三次积分法 设区域 利用投影法结果 把二重积分化成二次积分即得 当被积函数在积分域上变号时 因为 均为非负函数 根据重积分性质仍可用前面介绍的方法计算 小结 三重积分的计算方法 方法1 先一后二 方法2 先二后一 方法3 三次积分 具体计算时应根据 三种方法 包含12种形式 各有特点 被积函数及积分域的特点灵活选择 其中 为三个坐标 例1 计算三重积分 所围成的闭区域 解 面及平面 例2 计算三重积分 解 用 先二后一 2 利用柱坐标计算三重积分 就称为点M的柱坐标 直角坐标与柱面坐标的关系 坐标面分别为 圆柱面 半平面 平面 如图所示 在柱面坐标系中体积元素为 因此 其中 适用范围 1 积分域表面用柱面坐标表示时方程简单 2 被积函数用柱面坐标表示时变量互相分离 其中 为由 例3 计算三重积分 所围 解 在柱面坐标系下 及平面 柱面 成半圆柱体 例4 计算三重积分 解 在柱面坐标系下 所围成 与平面 其中 由抛物面 原式 3 利用球坐标计算三重积分 就称为点M的球坐标 直角坐标与球面坐标的关系 坐标面分别为 如图所示 在球面坐标系中体积元素为 因此有 其中 适用范围 1 积分域表面用球面坐标表示时方程简单 2 被积函数用球面坐标表示时变量互相分离 例5 计算三重积分 解 在球面坐标系下 所围立体 其中 与球面 例6 求曲面 所围立体体积 解 由曲面方程可知 立体位于xoy面上部 利用对称性 所求立体体积为 yoz面对称 并与xoy面相切 故在球坐标系下所围立体为 且关于xoz 内容小结 积分区域多由坐标面 被积函数形式简洁 或 说明 三重积分也有类似二重积分的换元积分公式 对应雅可比行列式为 变量可分离 围成 1 将 用三次积分表示 其中 由 所 提示 思考与练习 六个平面 围成 2 设 计算 提示 利用对称性 原式 奇函数 或 积分域 关于XOY面对称 被积函数关于z为奇函数 利用对称性 可知原式为0 3 设 由锥面 和球面 所围成 计算 提示 利用对称性 用球坐标 备用题1 计算 所围成 其中 由 分析 若用 先二后一 则有 计算较繁 采用 三次积分 较好 作业 P871 4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025福建福州市永泰县青少年业余体校外聘柔道教练员招聘1人模拟试卷附答案详解(考试直接用)
- 2025年青岛胶州市中医医院高级人才引进模拟试卷带答案详解
- 2025内蒙古呼和浩特市托克托县补录参加2024年公益性岗位招聘4人模拟试卷附答案详解(完整版)
- 2025年春季中国石油高校毕业生招聘模拟试卷及答案详解(名校卷)
- 2025安徽理工大学第一附属医院第二批紧缺岗位招聘14人考前自测高频考点模拟试题及1套完整答案详解
- 2025广东珠海市金湾区招聘公办中小学编制内教师160人模拟试卷附答案详解(突破训练)
- 2025汉中市南郑区投资控股集团有限公司招聘(4人)考前自测高频考点模拟试题附答案详解(完整版)
- 2025年杭州市临安区中医院医共体招聘合同制员工11人模拟试卷附答案详解(典型题)
- 2025年烟台市退役军人事务局所属事业单位卫生类岗位公开招聘工作人员(5人)考前自测高频考点模拟试题有完整答案详解
- 海航集团安全培训课件
- 2025年南网春招笔试试题及答案
- 2025餐饮业简易劳动合同范本下载
- 南通蓝浦环评报告书
- 商户维护与管理办法
- 2025至2030中国金属铬行业产业运行态势及投资规划深度研究报告
- 2025年陕西省中考英语试题卷(含答案及解析)
- cma资料培训课件
- 专利代理所管理制度
- 农村道路交通宣传课件
- DZ/T 0275.5-2015岩矿鉴定技术规范第5部分:矿石光片鉴定
- 2025年新教材道德与法治三年级上册第二单元《学科学爱科学》教案设计
评论
0/150
提交评论