脉冲瞬变电磁场.doc_第1页
脉冲瞬变电磁场.doc_第2页
脉冲瞬变电磁场.doc_第3页
脉冲瞬变电磁场.doc_第4页
脉冲瞬变电磁场.doc_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电磁场专题研究读书报告脉冲瞬变电磁场从一篇论文谈起 张卓鹏 2003年1月4日目录1.概述31.1 脉冲通信系统31.2 瞬变电磁场理论概论52.瞬变电磁场在同轴线中的传播73.瞬变电磁场的发射113.1 瞬态电流元的辐射113.2 无限长圆柱天线的瞬态辐射134.瞬变的磁场的接收155.有耗介质中的瞬态电磁场185.1 瞬态均匀平面波在有耗介质中的传播185.2 瞬态球面波在有耗介质中的传播20附录24参考文献25学习体会25文档写作分工:2、3、5(部分)宋成森1、4、5(部分)张卓鹏摘要:通过频域的方法对瞬态电磁场的研究,本文浅显的探讨了和脉冲通信相关的电磁场的发射、接收和传播问题。1. 概述我们的专题研究是从文章Impulse Radio: How It Works 开始的。该文从通信领域的角度对超宽频脉冲无线电技术的原理进行了精练的讲述。在经过广泛的阅读研究之后,我们对该文以及其所涉及的内容有了一定深度的了解。在本文中,我们将从多个方面谈一谈对该文谈及的理论的肤浅见解。我们将抛开通信理论,重点讨论一下与脉冲无线电相关的电磁场领域的问题,主要集中探讨脉冲瞬变电磁场的传播、发射与接收。本文多数为相关书籍的内容,但其中也有相当部分为我们的个人理解,因此难免出现错误,敬请老师批评指正。1.1 脉冲通信系统在详细论述瞬变电磁场理论之前,我们先来简要的关注一下我们所谈及的论文的内容。 用电磁脉冲作为信息载体构成的通信系统(在空间传播的是载有信息的慢衰减电磁脉冲,而不是经调制的正弦波)又称为超宽带通信系统。超宽带通信是以经数码调制的瞬态电磁脉冲在自由空间传播来传递信息为基础的。图中是一个以电磁脉冲作为信息载体的语言通信发射机框图。其原理是用声码器将模拟语言信号变为数字信号,利用数字复接器将n路语音数字信号按时分复用汇接成单一的复合数字信号,利用数字信号控制伪码产生器,产生高速的的随机序列,码长可达31位甚至更长。用这一伪随机序列调制电磁脉冲源,产生峰值功率达到兆瓦至吉瓦量级的窄脉冲,其宽度为纳秒到皮秒量级,经电磁脉冲辐射器向一定方向辐射出去。图1.1.2是与图1.1.1发射机相应的接收机框图。其工作原理是利用一个高速触发器将收到的电磁脉冲变成常规数字信号,然后利用数字相关滤波器把收到的伪随机序列的检测出来,并用数字锁相环实现接收机时钟与发射机伪随机序列时钟同步,最后把复合数字信号分离成n路数字信号,并恢复成模拟语音信号。图1.1.1 电磁脉冲发射机框图图1.1.2 电磁脉冲通信接收机框图脉冲无线电通信采用小于1 ns的非常窄的时域脉冲传播信号,其能量分布在从DC到几GHz的范围之内。它将1bit的信息包含到多个脉冲时跳间隔中以实现信号的脉冲调制,具有优异的抗干扰能力。同时,该技术采用了码分多址的复用方法,应用伪随机数列的相关性进行调制与接收,从而做到多用户。这些内容所涉及了信息论、数字脉冲技术、信号与系统、随机理论等多门学科的知识,我们将不再论述。以下来谈一谈本文的主要研究内容。1.2 瞬变电磁场理论概论以上该论文所谈及的脉冲无线电技术中,与瞬变电磁场有着密切的联系,这就是本文要研究的主要内容。但是,它与我们所学习的电磁场理论有着很大的不同。对于瞬变电磁场的研究,从上个世纪六十年代就开始了,在七八十年代有了飞快的发展,并在遥感与目标识别领域有着应用。但在通信领域,一直到90年代末,才开始了相关的理论研究。比如上文所谈到的论文就是写于1998年。c- c c+图1.2.1 AM调幅波频谱在传统的电磁场理论中,我们着重研究了随时间按正弦规律变化的稳态场,即时谐场。这是与传统的通信技术有关的,因为在一般的射频与微波技术中所传播的调幅、调频和调相无线电信号,都是在单一载波上携带的,其频带很窄(见图1.2.1),因此信号也近似为单一频率。而在脉冲无线电技术中,所传递的电磁波不再是时谐的,同时在频域上有着超大的带宽。这就造成了瞬态电磁场与时谐电磁场有着很大的差异。例如,由于其宽带特性,在电磁场的传播过程中,色散将非常的严重,这就是说,我们无法再将其看作是近似没有色散的,色散也就成为了我们必需要关注和讨论的问题。我们对于瞬变电磁场的研究是以叠加原理为基础的。这个原理在电磁场与电磁波4教材中有详细的论述:如果在我们所研究的区域内及边界上,媒介的、都于场强无关,即我们处理的是线性媒质,那末麦克斯韦方程所描述的系统就是线形系统,根据线形系统的叠加原理,若Ei、Di、Bi、Hi,i从1到n,是给定边界条件下麦克斯韦方程的多个解,则、 必是麦克斯韦方程在同一边界条件下的解。叠加原理是线形系统普遍适用的物理学原理,其更为广义的描述是:在线形系统中,若干个原因的总效应,等于各原因单独存在时引起效应的总和。应用叠加原理可使问题变得容易求解。在求解系统对一个激励的响应时,我们把激励分解成若干分量,使系统对各分量的响应容易求得。再根据叠加原理,对各分量的响应求和,即得系统对实际激励的总响应。根据信号与系统理论,用傅立叶积分变换作为分解的数学工具,把一个瞬态的时间过程分解成各频率分量稳态过程的叠加。实际上,在这个过程中,时域的问题已经变成了频域问题。先在频域求出问题的解,再经过逆变换求得时域解。这就是频域法,是解决瞬态电磁场问题的经典方法。然而,只有极少数问题在实频域有解析解并可以得到解析解的逆变换结果。在本文中,我们将分别就瞬变电磁场的传播以及其发射与接收问题作更为深入的讨论。2. 瞬变电磁场在同轴线中的传播如果传输线是理想的,阶跃信号或脉冲信号在无限长的传输线中传播不会发生畸变。但实际上传输线是有损耗的,信号在传播过程中肯定会发生畸变。对同轴线而言,衰减主要来自趋肤效应损耗。我们知道传输线上电压,电流满足传输线方程: 其中(2.a) k、Zc(或YC)均为复数。传输线方程的解是: k、Zc是传输线的两个特征参数。k叫传输线的传播常数,其实部kr表示波的传播,虚部ki表示波的衰减,在z方向按衰减,叫做衰减常数。ZC叫做传输线的特征阻抗,YC叫做传输线的特征导纳。在同轴线内外导体上的损耗于趋肤效应有关。我们知道,对于电导率不是无穷大的非理想导体,每单位表面积阻抗为。 设同轴线外半径b,内半径a,当b比a大得多时,内导体的表面积阻抗是起主要作用的。这样在每单位长度的同轴线上由趋肤效应引入的串联阻抗近似为K 其中K这样,(2.a)式中R用代替。 试验表明,对大多数聚乙烯材料的介质同轴线,介质的损耗与趋肤效应引起的导体损耗相比式可以忽略的。于是令(2.a)式中G0,得 设在整个有效的频带内,损耗很小,满足,上式用二项式展开来近似 其中。jk的实部为传输线的衰减常数,由上式可得所以由趋肤效应引起的衰减与频率的平方根成正比,且同轴线内径a越大,电导率越高,损耗越小。取z0为同轴线的输入端,zl为同轴线的输出端。假设同轴线无限长,没有反射波,则系统的传递函数为求逆变换可得系统的冲击响应其中 此式是假设在在z0入射脉冲时,传输l距离后的波形。 于是可以求出输入为单位阶跃函数u(t)时,在zl处的波形 其中,称为补余误差函数。利用规一化时间坐标作出g(t)和h(t)的图形:令,得 对于特定的传输线,常数B可以通过试验数据获得。以下是g()的曲线图2.1 g()的曲线由冲激响应的表达式,我们可以看出:随传播距离l不同,各点的冲激响应是不同的。因此随着传播距离的变化,接收的波形也不同。并且距离越远,色散越大。我们认为这种通信方式不适合远距离通信,因此在参考文献【7】中提出的,用超宽带宽通信的方法实现视频点播是很难实现的。3. 瞬变电磁场的发射3.1 瞬态电流元的辐射2 lzyr-l cosr+l cosr图3.1.1 瞬态电流元模型此瞬态电流元由电荷的瞬间运动产生。如图,在z轴上原点两边对称放置+q 和-q两电荷,相距2l。设从t=-l/v时刻开始,+q以均匀速度v 匀速向-q移动,在t=l/v时刻到达-q,速度立刻变为0。 电流密度,其中电荷密度所以取上式的傅立叶变换,得频域的电流密度式中 。则区间的电流强度为 (3.1.a)z轴上的电流元Idz在远区处的E按下式计算: (3.1.b)所以(3.1.a)式的电流分布的远区场为= 求傅立叶逆变换,得(3.1.a)式瞬态电流元的远区场波形如图0图3.1.2 瞬态电流元的远区场从图中我们可以得到瞬态辐射的一些性质(1) 辐射场是一正一负两个脉冲,两个产生辐射场的点,一个是电荷的突然加速点,一个是电荷的突然减速点,所以辐射场是电荷 的加速运动产生的。(2) 各方向辐射的时域波形不同,两个脉冲的间距随变化。(3) 各方向辐射场的幅度不同。 3.2 无限长圆柱天线的瞬态辐射无限长圆柱天线是一个理论模型。如果天线足够长,加在天线输入端的电压脉冲足够窄,则在天线上的电流脉冲从激励点到达终端之前,电流分布及辐射场的瞬态响应都与无限长天线的瞬态响应相同。设天线半径a很小,ka1,。沿线电流方向只有z分量。场分量中。麦克斯韦方程可以表示为:在的表面的边界条件为 利用傅立叶变换法求解 这是精确解。对于的远区辐射场,可以利用鞍点法求出上式积分的近似结果:定义一个新的传递函数假设U(t)是高斯脉冲 对应的频谱函数 ,其中。图3.2.1 U(t)与U()波形对取傅立叶逆变换,得远区辐射场与的乘积计算时取天线半径a0.001m,1,将辐射场波形与输入端电压的高斯脉冲波形画在一起,可以看到它们基本重合。4. 瞬变的磁场的接收在频域,天线可以等效成有内阻的源,感应电动势即天线的开路电压,是端接负载。利用互易定理可知,天线的阻抗,实效高度和天线的归一化方向图,在天线用做发射和接收时相同,并且接收天线的感应电动势为Ei是从(,)方向投射来的平面波。于是,为计算接收天线的感应电动势,可由天线在发射状态的和得出。考虑z轴上的电流分布式中是以天线输入电流归一化的电流分布。即。由式(3.1.b)可得远区的辐射场为天线的实效高度是一个等效元天线的长度,其上电流按实际天线输入端电流均匀分布,并且在远区最大辐射方向能产生与原天线相等的电场。因此上式也可以表示如下表达方便起见,我们做如下定义,定义“方向性实效高度”为因此所以,只要知道了天线上以输入端电流归一化的电流分布,即可求出。这样,感应电动势就可以表示成由等效电路可得使用与频率基本无关的短探针作为检测器,可以基本上不失真的测出入射波时域波形。设长度2l很短的偶极天线在整个来波频谱内满足则线上电流可表示成三角形分布以开路电压U0作为系统对入射场Ei的响应,系统的传递函数为,由前面的论述可得当满足条件时,可见,系统传递函数满足不失真传递条件。其开路电压为对上式求逆变换即得系统时域响应为用开路电压可以不失真地测得入射场的波形。为了满足,入射场频谱的上限频率越高,电压探针应越短。满足条件的短偶极子的输入阻抗近似为是很大的容抗(),因此,当端接负载为电容器CL时,负载上的电压降为此时UL(t)将基本上重现入射场的波形。当短天线满足kh0区域,其解为Ex(z, )=Ae-jkz式中,/ k是媒介中的复数波阻抗。根据(5.a)式,由z0的边界条件的可得代回得频域解变换为复频域,(z0) (5.b)利用拉氏变换关系式其中为零阶修正的贝塞尔函数。对(5.b)式求拉氏逆变换,即得瞬态平面波解为式中,。由上式可分析出瞬变场在有耗媒介中传播得两个特性:(1)波前以速度,即高频区的相速传播。可见波前是由脉冲频谱中的高频分量构成。(2)指数因子决定,场的幅度随时间的延长而迅速减小。52瞬态球面波在有耗介质中的传播在来最后具体解释说明所引起我们讨论的那篇论文之前,先来研究一下我们一直在讨论的窄脉冲。我们可能会遇到各种各样的脉冲,用来表示它。假设它仅存在于的时间间隔内,且为正值,如下图所示。用下式来计算这个窄脉冲的频谱图6.1 任意形状的窄脉冲在积分限到之间。这时,S代表脉冲的面积。此结果表明:窄脉冲具有接近均匀的频谱,而与的波形形状基本无关。这就使得我们在当脉冲宽度足够窄的时候,不再去关心它的形状。上述结果只有当时才正确。因此,只有频率低于数量级时,频谱函数才保持恒定,且等于S。在频率达到量级以后,开始减小,如下图所示。可见,决定了脉冲频谱宽度的数量级。在我们所研究的脉冲通信中,脉冲的宽度约为1ns,上限频率达1GHz。图6.2 窄脉冲的频谱现在让我们来考虑我们所一直关注的电磁脉冲通信系统。我们假设已经产生了一个类似于图6.1所示的数量级为1ns的窄脉冲。正如上文所述,我们并不关心脉冲的波形,只要它已经如我们所期望的一样窄。现在考虑电磁脉冲在空间中(或者介质)传播的损耗。为了使问题简便,认为空间是均匀和各向同性的,并且假设天线发射和接收能够做到无失真,在传输线中传播时也无损耗。对于位于无限均匀有耗介质中的一个电流元,设它指向+z 方向,它所辐射的远区场的频域解是在发射端,认为为发射的信号脉冲,在接收端把作为接收的信号,那么传播空间方向就可以看作是一个滤波器,其系统函数为其波形如下图所示图6.2 系统函数波形图6.3脉冲无线电通信系统时域、频域波形从图6.2中我们可以看出,其频域的特性和图6.3是基本上相同的图6.3中频域中的黄线即是前文所提到的任意形状的短脉冲的频谱图,蓝线就是经过传播之后的波形,相当于经过了一个带通的滤波器。对应的时域的波形近似如图所示,只要把频域谱进行反变换就可以,我们不再做进一步的研究。实际上,运用解析法求反变换是比较麻烦的,可以使用IFFT进行数值求解。图 6.4 瞬态传播过程下面我们定性的来对这个结果进行解释。在稳定的有色散媒介中,由于各个频率分量传播速度的差异,在接收端收到的信号与原始信号相比将会出现压缩、失真或其他变化。对于最高频率分量而言,实际的传播媒质的质点跟不上激励信号的变化,因此,对于激励的高速脉冲的最高频率成分来讲,可把实际的传播媒质当作非色散媒质来考虑,则最高频率分量的传播速度等于光速不变。对于激励的高速脉冲的低频分量而言,显然传播媒质将对激励信号的传播带来影响,因此,低频分量有所降低。不同频率分量的传播速度降低程度不同,它取决于传播媒质的自然频率或传播速度降低的多少。可以用右图来描述这种色散现象。对一个距高频脉冲激励信号有一定距离的观察者而言,激励的高速脉冲的各个频率分量传播到观察者的身边的先后次序是不同的。最先到达的是最高频率分量,它相当于告诉脉冲的波前,随后依次到达的各个频率分量是按频率高低来排列先后次序的,频率越高越先到达。在波前到达观察者身边的这一瞬间,各个频率分量则根据它的频率高低分别处在距离观察者远近不同的距离。频率越高,色散效应越小,距离观察者越近。若认为波前的传播不受色散影响,则波前之后的一段区域内色散效应逐渐增大。附录:贝赛尔函数:第二类贝赛尔函数:第一类汉克尔函数:第一类汉克尔函数:参考文献1 彭仲秋.瞬变电磁场. 北京:高等教育出版社, 1989.2 何小艇.高速脉冲技术. 杭州:浙江大学出版社, 1990.3 金亚秋.复杂系统中的电磁波. 上海:复旦大学出版社, 1994.4 陈抗生.电磁场与电磁波. 杭州:浙江大学信电系, 2002.5 Moe Z. Win, Robert A. Scholtz. “Impulse Radio: How It Works”. IEEE, 1998.6 陈进光译. E. 赫茨勒, H. 霍茨瓦尔特.脉冲技术. 北京:人民邮电出版社, 1982.7 郑卫国. 视频点播的一种TM-UWB实现.多媒体技术论坛2000(MTF2000)宋成森的学习体会: 通过这一学期的学习,基本掌握了电磁场的基本概念,电磁波的运动规律和解决电磁场问题的基本方法。通过本次的专题读书报告,更加深了对所学知识的理解,注意到了以前没有认识到的一些问题。特别是通过查阅资料,对比教科书,从

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论