




已阅读5页,还剩44页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
4 3李雅普诺夫稳定判据 4 3 1预备知识1 标量函数的正定性标量函数的正定性定义如下 1 当时 当时 则称是正定的 2 若除原点和某些状态下为零 而其余部分都大于零 则称为半正定的 3 若是正定的 则称是负定的 4 若是半正定的 则称是半负定的 5 若既可以是正值 也可以是负值 则称是不定的 根据上述定义容易检验下列标量函数的正定性1 是正定的 2 是半正定的 因为当时 0 3 是负定的 4 是半负定的 5 是不定的 因为当 时 而当 时 2 二次型标量函数及其正定性条件若 4 32 则称为二次型标量函数 其中P一般表示为实对称矩阵 即 若P表示为实对称矩阵 二次型标量函数的正定性可以用塞尔维斯特 Sylvester 准则判别 该准则叙述如下 塞尔维斯特准则 记P的主子行列式为 4 33 二次型标量函数为正定的充要条件是矩阵P的所有主子行列式为正 即 4 34 二次型标量函数为负定的充要条件是矩阵P的各阶主子式满足 4 35 4 3 2李雅普诺夫稳定判据 若非线性连续系统的状态方程为 4 36 不失一般性 设系统的平衡状态为 如果 可以通过变换为零 连续系统的李雅普诺夫稳定判据 若存在一个标量函数 对所有的有连续的一阶偏导数 且是正定的 则 当为负定时 平衡状态是渐近稳定的 当为负定 且时 平衡状态是大范围渐近稳定的 当为半负定时 平衡状态是李氏意义下稳定的 当是半负定的 不恒等于0时 平衡状态是大范围渐近稳定的 当为正定时 则平衡状态是不稳定的 标量函数称为李雅普诺夫函数 离散系统的李雅普诺夫稳定判据 对于非线性离散系统 4 37 若存在一个连续的标量函数 对任意 是正定的 则当对任意 沿轨线 4 38 为负定时 它的平衡状态是渐近稳定的 进一步当 时 平衡状态则是大范围渐近稳定的 当是正定时 平衡状态是不稳定的 标量函数称为系统的李雅普诺夫函数 例4 13非线性系统的状态方程为分析其平衡状态的稳定性 解 确定平衡点 因为 所以 即系统的平衡点为 取李雅普诺夫函数为 则将状态方程代入上式得可见 是负定的 因此 系统在坐标原点处的平衡状态是渐进稳定的 又因为时 所以是大范围渐进稳定的 例4 14线性系统的状态方程为判别系统稳定性 解 是唯一的平衡点 取 则当时 是半负定的 系统平衡点是李氏意义下稳定的 当时 因此 不恒等于0 也不恒等于0 因此 系统平衡状态是大范围渐进稳定的 李雅普诺夫函数不是唯一的 本例也可取则因此 是负定的 又因为当 所以 系统是大范围渐进稳定的 例4 15分析系统的稳定性 解平衡点为 取则可见 是正定的 所以 平衡点是不稳定的 4 3 3线性连续系统的李雅普诺夫稳定判据 李雅普诺夫稳定判据是最一般的方法 适用于线性和非线性系统 但其主要的问题是难以寻找李雅普诺夫函数 事实上 李雅普诺夫稳定性理论本身没有提供构造李雅普诺夫函数的一般方法 但对线性系统 一定可以用二次型来构造李雅普诺夫函数 下面介绍线性系统的李雅普诺夫函数的构造方法与李雅普诺夫稳定判据 设线性时变连续系统的状态方程为 4 39 总可以用下列正定二次型函数作为李雅普诺夫函数 4 40 式中 为实对称正定矩阵 令 4 41 式 4 41 称为李雅普诺夫矩阵微分方程 于是 4 42 若Q是正定的 则是负定的 因此 满足式 4 41 的实对称矩阵所构成的正定二次型函数 是线性连续系统的李雅普诺夫函数 线性连续系统的李雅普诺夫稳定判据 线性系统稳定的充分必要条件是 给定一正定的实对称阵Q t 存在一个正定实对称矩阵P t 使得李雅普诺夫矩阵微分方程成立 对于线性系统 若A是非奇异矩阵 系统只有一个平衡点 所以 若系统是稳定的 则也是大范围稳定的 对于线性定常系统 为常量矩阵 李雅普诺夫矩阵微分方程变为矩阵代数方程 4 43 按照以上的介绍 判断线性定常系统稳定性的步骤 应是先取一个正定的实对称阵Q 然后根据式 4 43 解出P 最后检验P的正定性 即可确定系统的稳定性 由于Q阵可以任意指定 而判断结果与Q阵的具体选择无关 为简化计算通常取Q I 例4 16系统的状态方程为 分析系统的稳定性 解取Q I 代入得 根据矩阵相等的定义 得到下列方程组 解得 则 验证正定性 因为所以 P是正定的 因此 系统是 大范围 渐近稳定的 李氏函数为 4 3 4线性离散系统的李雅普诺夫稳定判据 设线性定常离散系统的状态方程为 4 44 取下列正定二次型函数为李雅普诺夫函数 4 45 式中 P为正定的实对称阵 对于离散系统 采用差分 代替 则令 4 46 式 4 43 称为离散系统的李雅普诺夫方程 于是 4 47 若Q是正定的 则是负定的 线性系统的李雅普诺夫稳定判据线性定常离散系统渐近稳定的充要条件是 给定任一正定实对称阵Q 存在一个正定实对称阵P 满足离散系统的李雅普诺夫代数方程 例4 17设离散系统的状态方程为试分析系统的稳定性 解 选Q I 代入离散系统的李雅普诺夫代数方程 4 47 得 根据矩阵相等的定义 得到下列方程组 解得 则 采用塞尔维斯特准则 所以 P为正定的实对称阵 系统是大范围渐近稳定的 李雅普诺夫函数为 例4 18设离散系统的状态方程为试确定系统的平衡点处大范围渐近稳定的条件 解 选Q I 代入离散系统的李雅普诺夫代数方程 4 47 根据矩阵相等的定义 得到下列方程组 解得 则 要使P为正定的实对称阵 应使 即使系统稳定的条件为 因为是线性系统 所以也是大范围渐近稳定的 4 3 5非线性系统的李雅普诺夫稳定判据 李雅普诺夫稳定判据虽然适用于非线性系统 但由于非线性系统的复杂性 目前还没有构造李雅普诺夫函数的一般方法 例如 克拉索夫斯基法选择作为李雅普诺夫函数 给出了非线性系统平衡状态在大范围内渐近稳定的充分条件 舒茨 基布逊 Schultz Gibson 的变量梯度法的基本思想是 如果存在一个能证明系统稳定的李雅普诺夫函数 则必然存在这个函数的单值梯度 因此 可以根据给定形式的去确定和 阿依捷尔曼方法用线性关系取代单值非线性函数 然后根据线性状态方程选取二次型李雅普诺夫函数 分析系统稳定性 下面介绍克拉索夫斯基方法 设非线性定常系统的状态方程为 4 48 其中 x为n维状态向量 f x 为n维向量函数 其元是的非线性函数 且对是连续可微的 设系统的平衡状态为 克拉索夫斯基建议用构造李雅普诺夫函数 即其中 W为正定对称常量矩阵 而 4 49 其中 4 50 称为雅可比 Jacobian 矩阵 4 51 令 4 52 则式 4 51 为 4 53 显然 如果由式 4 52 得到的是负定的 则是负定的 所以 平衡点是一致渐近稳定的 如果 则平衡点是一致大范围渐近稳定的 为简化计算 可以选取W I 则 4 54 例4 19分析下列非线性系统的稳定性 解由于可见 满足条件f 0 0 选择W I 则显然 V x 为正定的 由式 4 50 雅可比矩阵为 所以由于的各阶顺序主子式分别为 所以 S x 是负定的 由李雅普诺夫稳定判据 该系统是渐近稳定的 又由于 所以 该系统是大范围渐进稳定的 4 3 6小偏差线性化方法与李雅普诺夫第一法 1 小偏差线性化方法的基本思想目前一些常用的非线性分析方法的一个基本特点 是 总以某种形式通过线性化而建立起来的方法 最简单 最常用的线性化方法是所谓的小偏差线性化方法 这种方法假设系统始终运行在工作点附近一个较小的范围内 在这个范围内系统的输入与输出关系可以近似为线性的 描述系统的非线性微分方程式中所含非线性部分在稳态工作点附近展开为泰勒级数 忽略掉其中的非线性 即高次 项 仅取其线性 一次 项 从而将非线性微分方程式转化为线性微分方程式 2 非线性静态模型的线性化设非线性元件的静特性方程为 4 55 设预定工作点为或 则在工作点进行泰勒级数展开 并去掉高次项 得线性化方程为 4 56 式中 4 57 例4 20在例2 7中 液体流出的流量与液位高度H的关系为 求其线性化方程 解则线性化方程为 或者 其中 3 非线性微分方程的线性化设非线性系统的微分方程为 4 58 式中 c为系统的输出 r为系统的输入 L为线性部分 N为非线性部分 设预定工作点为 则线性化方程为 4 59 式中 4 60 例4 21在例2 7中 液位高度H与液体流入的流量的关系为 求其线性化方程 解由例4 20得到非线性部分的线性化方程为 由式 4 59 系统的线性化方程为 4 非线性状态方程的线性化设非线性系统的状态方程为 4 61a 4 61b 其中 均为连续可微的向量函数 设为系统的工作点 将非线性函数向量 在工作点展开成泰勒级数 并去掉高次项 得线性化方程为 4 62a 4 62b 其中 为雅可比矩阵 分别为 4 63 4 64 4 65 为状态的增量向量 为输入的增量向量 为输出的增量向量 若记 则线性化方程记为习惯的表示形式 4 65 例4 22求下列非线性系统在处的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025河南济源示范区乡村医生“乡聘村用”招聘7人模拟试卷附答案详解(突破训练)
- 飞机自动驾驶仪测试调整工合规检查配合考核试卷及答案
- 2025甘肃庆阳市庆城县事业单位引进高层次和急需紧缺人才4人(第三批)模拟试卷附答案详解(完整版)
- 2025江苏苏州卫生职业技术学院招聘35人模拟试卷及参考答案详解1套
- 变压器设备检修工岗位职业健康技术规程
- 搪瓷制品制造工安全考核试卷及答案
- 公司果蔬加工工岗位职业健康、安全、环保技术规程
- 变压变温吸附装置操作工岗位职业健康、安全、环保技术规程
- 2025湖南矿产集团子公司招聘16人模拟试卷及答案详解(典优)
- 2025河北招聘(选聘)辅助性岗位工作人员13人模拟试卷及答案详解(夺冠系列)
- 2025-2026学年河南省天一大联考高一年级秋季检测数学试卷(含答案)
- 关于下发安全生产管理制度的通知
- 心源性休克病人的护理
- 如何落实责任制整体护理
- 家政中介服务线上平台运营方案
- 2025-2026学年华中师大版(2024)小学体育与健康一年级(全一册)教学设计(附目录P123)
- 叶云燕老师课件
- 第13课 美丽中国我的家(教学课件)小学二年级上册 统编版《道德与法治》新教材
- 北师大版(2024)二年级上册《参加欢乐购物活动》单元测试卷(含解析)
- 学校心理咨询工作流程
- 多肉教学课件
评论
0/150
提交评论