互斥事件及其和事件的概率优质课教案.doc_第1页
互斥事件及其和事件的概率优质课教案.doc_第2页
互斥事件及其和事件的概率优质课教案.doc_第3页
互斥事件及其和事件的概率优质课教案.doc_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

精品文档3.1.3互斥事件及其和事件的概率教学设计 课 题:3.1.3 互斥事件及其和事件的概率教材分析:必修三在第三章引进概率后,首先介绍了概率的定义,以及古典概型、几何概型概率公式,为了将一些较复杂的概率的计算化成较简单的概率的计算,就要根据不同事件之间的联系和关系,将我们所考虑的事件作出相应的正确运算本节将围绕着解决求较复杂事件概率的问题,介绍互斥事件以及事件的和的意义然后再探究出对于怎样的事件可应用哪一种概率加法公式计算事件的概率学情分析:学生在此之前学习了概率的定义,并且学会运用古典概型,几何概型的相关公式公对一些简单的等可能随机事件求概率,但对于较复杂概率问题,如果学生直接根据概率的定义来进行计算是很不方便的,由于概率这一章所涉及到的内容与他们生活联系较紧密,学生有相对较大的兴趣,对于问题的解决都能够有自己的想法,然而想法是建立在他们的生活经验上,并没有理论知识的支持,而对于较复杂问题 ,仅凭已有认知和自己的生活经验,并不能够真正解决问题,他们需要学习新的理论知识,需要通过书本上的知识与已有认知的结合,从而完善他们的认知结构,解决更多的概率问题。教法分析:本节课主要采用的教学方法是讲授法,在设计教学内容的过程中,站在学生思维的角度,根据学生的最近发展区创设问题情景,引导学生从集合间的关系类比分析事件之间的关系,感悟数学划归的思想方法,将复杂的求概率的问题转化成几个互斥事件概率和的问题,或者是求其对立事件概率的问题,从而达到解决问题的目的,进而引导学生归纳猜想,得到多个事件彼此互斥的概率公式,通过验证、练习巩固、总结反思。整个教学过程以学生为主体,站在学生的角度,换位思考,通过预测学生的心理需求,预判学生的思维活动,预设课堂重点关注的问题,引导学生把所学、所悟、所感、所创激发出来,促进他们积极发现数学的内在规律、理解数学的本质、感悟数学的精神教师也时刻监控学生的认知与思维过程,用鼓励性的语言与学生进行交流、探讨,帮助学生发现问题、解决问题。 教学重难点:【教学重点】互斥事件的概念及其概率的求法。【教学难点】对立事件与互斥事件的关系,事件A+B的概率的计算方法。教学过程:一、讲解新课:1.事件的和的意义例1:抛掷一个六面分别标有数字1、2、3、4、5、6的正方体玩具事件A:掷出奇数点事件B:掷出不大于3的点事件C:掷出1或2或3或5问1:试验所有基本事件有多少个?问2:事件A、B、C分别含有哪些基本事件?问3:事件A、B、C的概率分别是多少?如果我们把A、B、C所包含的基础事件分别用集合A、B、C表示,如图,那么集合A、B、C之间有什么关系?我们把事件C叫做A和B的和事件,记作A+B或AB问4:和事件A+B表示什么含义?给出和事件的意义:A+B表示A和B至少发生一个 因此,对于事件A和事件B是可以进行加法运算的和事件A+B的含义:在同一试验下,A或B中至少有一个发生.2. 互斥事件的概念、和事件的概率与各个事件的概率的关系问5:A+B的概率怎么求?它与A、B发生的概率有什么关系吗?如果把上例中的A、B对应的变成如图所示,那么P(A+B)和P(A)、P(B)之间有什么关系?引导学生发现A、B的和事件和A、B之间的关系P(A+B)P(A)+P(B).问6:上面式子什么时候等号成立?当AB=时,我们把A和B称为互斥事件.问7:什么叫互斥事件?当A、B互斥时,A+B又表示什么含义?当A、B互斥时,A+B表示A、B只发生其中一个,此时P(A+B)=P(A)+P(B).例2、判断下列试验中事件A、B是否是互斥的?抛掷一枚硬币,事件A为出现正面向上,事件B为出现反面向上;抛掷两枚硬币,事件A为恰有一枚正面向上,事件B为全部出现正面向上;掷一次骰子,事件A为出现奇数点,事件B为出现2点;抛掷两枚硬币,事件A为至少出现一枚正面向上,事件B为至少出现一次反面向上.例3、一个盒子内放有10个大小相同的小球,其中有7个红球,2个绿球,1个黄球,从中任取一个小球,求:(1)事件A“得到红球”的概率;(2)事件B“得到绿球”的概率;(3)事件C“得到红球或者绿球”的概率.问8:如果把上述事件C改为:得到黄球,那么事件A与B,A与C、B与C之间分别有什么关系?在上面的问题中,和是互斥事件,和也是互斥事件;和也是互斥事件一般地:如果事件中的任何两个都是互斥的,那么就说事件彼此互斥3对立事件的概念及其概率公式从盒中任意摸出一个球,若摸出的球不是红的,即事件没发生,记作由于事件和事件不可能同时发生,它们是互斥事件又由于摸出的一个球要么是红球,要么不是红球,即事件和事件必有一个发生像这种其中必有一个发生的互斥事件叫做对立事件问9:对立事件之间的概率有什么关系呢?由对立事件的意义:是一个必然事件,它的概率等于,又由于与互斥,我们得到:P(A)+P()P(A).对立事件的概率的和等于引导学生根据对立事件的概念推出P(A)+P()=1.即互为对立的两件事件的概率之和为1.二、讲解范例:例4、判断下列试验中事件A、B是否是互斥的?对立的?抛掷一枚硬币,事件A为出现正面向上,事件B为出现反面向上;抛掷两枚硬币,事件A为恰有一枚正面向上,事件B为全部出现正面向上;掷一次骰子,事件A为出现奇数点,事件B为出现2点;抛掷两枚硬币,事件A为至少出现一枚正面向上,事件B为至少出现一次反面向上;从一堆产品中(其中正品和次品都多于2个)任取2件,其中事件A为至少有一件次品,事件B为全是正品.例5.某射手射击一次射中,10环、9环、8环、7环的概率分别是0.24、0.28、0.19、 0.16,计算这名射手射击一次1)射中10环或9环的概率P1;2)至少射中7环的概率P2;3)射中环数不足8环的概率P3.三、课堂练习:1、某小组有3名男生和2名女生,从中任选2名同学参加演讲比赛判断下列每对事件是不是互斥事件,如果是,再判别它们是不是对立事件(1)恰有一名男生与恰有2名男生;(2)至少有1名男生与全是男生;(3)至少有1名男生与全是女生;(4)至少有1名男生与至少有1名女生2、从不包括大小王的52张扑克牌中随机抽取一张,那么抽到红心(事件A)的概率是,取到方片(事件B)的概率是,问:(1)取到红色牌(事件C)的概率是多少?(2)取到黑色牌(

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论