08060419-超声波加工.doc_第1页
08060419-超声波加工.doc_第2页
08060419-超声波加工.doc_第3页
08060419-超声波加工.doc_第4页
08060419-超声波加工.doc_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

超声波加工Ultrasonic machining班级:08营 姓名:王晶 学号:08060419【摘要】:超声加工是利用超声振动的工具在有磨料的液体介质中或干磨料中,产生磨料的冲击、抛磨、液压冲击及由此产生的气蚀作用来去除材料,以及利用超声振动使工件相互结合的加工方法.早期的超声加工主要依靠工具作超声频振动,使悬浮液中的磨料获得冲击能量,从而去除工件材料达到加工目的。但加工效率低,并随着加工深度的增加而显著降低。近20多年来,国外采用烧结或镀金刚石的先进工具,既作超声频振动,同时又绕本身轴线以10005000r/min的高速旋转的超声旋转加工,比一般超声波加工具有更高的生产效率和孔加工的深度,同时直线性好、尺寸精度高、工具磨损小,除可加工硬脆材料外,还可加工碳化钢、二氧化钢、二氧化铁和硼环氧复合材料,以及不锈钢与钛合金叠层的材料等。目前,已用于航空、原子能工业,效果良好。 超声加工时,高频电源联接超声换能器,由此将电振荡转换为同一频率、垂直于工件表面的超声机械振动,其根幅仅0005001mm,再经变幅杆放大至0050.1 mm,以驱动工具端面作超声振动。此时,磨料悬浮液(磨料、水或煤油等赃工具的超声振动和一定压力下,高速不停地冲击悬浮液中的磨粒,并作用于加工区,使该处材料变形,直至击碎成微粒和粉末。同时,由于磨料悬浮液的不断搅动,促使磨料高速抛磨工件表面,又由于超声振动产生的空化现象,在工件表面形成液体空腔,促使混合液渗入工件材料的缝隙里,而空腔的瞬时闭合产生强烈的液压冲击,超声波打孔机加工强化了机械抛磨工件材料的作用,并有利于加工区磨料悬浮液的均匀搅拌和加工产物的排除。超声技术在工业中的应用开始于20世纪1020年代,它是以经典声学理论为基础,同时结合电子技术、计量技术、机械振动和材料学等学科领域的成就发展起来的一门综合技术。超声技术的应用可划分为功率超声和检测超声两大领域。其中,功率超声是利用超声振动形成的能量使物质的一些物理、化学和生物特性或状态发生改变,或者使这种状态改变加快的一门技术。功率超声在机械加工方面的应用,按其加工工艺特征大致分为2类,一类是带磨料的超声磨料加工(包括游离磨料和固结磨料),另一类是采用切削刀具与其他加工方法相结合形成的超声复合加工。Abstract:Ultrasonic machining is using ultrasonic vibration tools in abrasive liquids medium or dry abrasive, abrasive impact generated into grinding, hydraulic shock and the resulting cavitation effect to cut materials, and the use of ultrasonic vibration to make the work mutual combination processing method. The early ultrasonic machining relies mainly on the tools for super audio vibration, make suspension of abrasive obtain impact energy, thus removing the workpiece material reach processing purpose. But machining efficiency low, and with the increase of depth of process and significantly reduced. For more than twenty years, foreign adopt the sinter or plating GangShi advanced vehicles, make already super audio vibration, and at the same time with 1000 - around itself axis 5000r/min of high-speed rotary ultrasonic rotating machining, than is commonly ultrasonic machining has more efficiency and the depth of the hole processing, and straight sex good, dimension precision, tools wear small, besides processing hard brittle material outside, still can be processed carbide steel, carbon dioxide steel, two ferric oxide and boron epoxy composites, as well as stainless steel and titanium alloy laminated materials etc. At present, we have used in aviation, atomic energy industry, good effect.Ultrasonic machining, high frequency power connection ultrasonic transducer, which will electrical oscillation conversion for the same frequency, perpendicular to the surface of workpiece ultrasonic mechanical vibration, the root only 0.005 0.01 mm portrait, then after ultrasonic transformers amplification to 0.05 0.1 mm to drive tools for ultrasonic vibration end. At this time, abrasive suspension (abrasive, water or kerosene spoils tools such as ultrasonic vibration and under certain pressure ceaselessly, high-speed impact of suspension and grits for processing, make four37-metre material deformation, until the break into particles and powder.At the same time, because of abrasive suspending liquid, stirring constantly prompted abrasive high-speed cast workpieces surface grinders, and with the ultrasonic vibration to produce cavitation phenomenon, on the surface of workpiece formed liquid cavity, prompting the mixture into the workpiece material aperture, and the cavity of the instantaneous closed produces strong hydraulic shock, ultrasonic machining aggrandizement the mechanical holing cast polisher pieces of material role, and to facilitate the processing zone abrasive suspending liquid even mixing and processing product ruled out.Ultrasonic technologies in industrial application began in 20th century 10 20 times, it is the classic acoustics theory as a foundation, and combining with the electronic technology, measurement technology, mechanical vibration and material science disciplines such as achievement in the field of developed a comprehensive technology. The application of ultrasonic technology can be divided into high-intensity ultrasound and detection ultrasound two fields. Among them, high-intensity ultrasound is formed by using ultrasonic vibration energy makes material of some of the physical, chemical and biological properties or state changes, or make the state changes of accelerating a foreign technology. High-intensity ultrasound in machining application, according to its processing technology feature roughly divided into 2 kinds, one kind is to bring the ultrasonic abrasive abrasive machining (including free abrasive and consolidation abrasive), another kind is to use cutting processing method combined with other forms of compound ultrasonic machining.【关键词】:超声波 加工 原理 特点 应用Keywords:Ultrasonic machining principle features application【引言】:随着各种先进材料应用需求的不断扩大,激光加工、高压水切割、电火花加工、电子束加工和电化学加工等特种加工方法均得到了较快的发展,相比传统加工方法,其特色和优越性得到较好的展示。激光加工的特点是切缝小、速度快、能大量节省原材料和可以加工形状复杂的工件,但是加工表面热损伤很难控制;高压水切割的特点是切口质量高、结构完整性好以及速度快,特别适宜金属基复合材料的切割,但是加工系统复杂;电火花加工和电化学加工则要求加工工件具有导电性。旋转超声加工是集普通超声加工与磨粒磨削加工为一体的复合加工,是加工硬脆性材料的一种高效方法,相比其他特种加工方法,它具有其独特的优势。目前,国内外学者在超声波应用于挤出成型、微热压成型、超声塑化等聚合物加工方面,做了许多探索性的研究。在超声波应用于挤出成型方面,超声波对聚合物熔体各方面性能的研究已比较深入。四川大学材料工程国家重点实验室针对超声波聚合物降解和聚合物共混挤出进行了深入研究。在超声波降解过程中,超声波能减小聚合物熔体的分子量,使结晶温度升高,也能降低熔体表观粘度,导致拉伸强度下降;在超声波聚合物共混挤出成型过程中,超声波能使混合粒子尺寸减小,分布更为均匀,改善共混物的机械性能,也能影响晶核生长行为,增加结晶温度和结晶度,同时还能明显降低共混物的口模压力和熔体表观粘度,改善流动性能。在超声波应用于微热压成型方面,日本的Harutaka Mekaru通过带有微结构模仁的超声波工具头振动加热塑料工件表面来压印微结构,发现超声振动加热压印微结构在改善聚合物流动性能方面有极佳表现。微结构复制实验显示,超声振动加热压印成型的制品精度良好。在超声塑化方面,超声波对聚合物熔体的塑化质量研究尚处於起步阶段。德国亚琛大学IKV研究所将超声波引入到聚合物的微量塑化过程中,改善了聚合物的塑化质量,得到了具有良好均质性的聚合物;湖北工学院将超声波、机械振动和高剪切微磨引入到聚合物的塑化过程,发现一定频率的超声波对聚烯烃的结晶起着积极的作用,聚合物的塑化效果良好。【正文】:1、超声波的特性 声波是人耳能感受到的一种纵波,其频率范围为1616000Hz。当声波的频率低于16Hz时就叫做次声波,高于16000Hz则称为超声波。具有如下特性: 1)超声波可在气体、液体和固体介质中传播,其传播速度与频率、波长、介质密度等有关,可用公式表示 C= f (51) 式中 C-超声波传播速度(mS); -波长(m); f-频率(HZ)。 2)超声波在各种介质中传播,其运动轨迹都按余弦函数规律变化,其位移为 xA* cos(*t + )(52) 式中 x-质点运动的位移(m); A-振幅(m); -圆频率(radS); t-时间(s); -振动的相位角(rad)。 3)超声波可传递很强的能量,其能量强度可用垂直于波的传播方向单位面积的能量来表示,超声加工中的能量强度高达几百瓦平方厘米,且90作用于工件表面。 4)超声波会产生反射、干涉和共振现象。出现波的叠加作用,使弹性杆中某处质点始终不动,而某处质点的振幅则大大增加,从而获得更大的超声加工能量。这是因为,超声波在同一弹性杆的一端向另一端传播时,在不同介质的介面上会产生一次或多次波的反射,结果在有限长弹性杆,将存在若干个周期相同、振幅相等、传播方向相同或相反的波。于是在弹性杆传播的波,会出现波叠加,致使某处振动始终加强,或某处振动始终减弱,产生波的干涉现象。 5)超声波在液体介质中传播时,可在界面上产生强烈的冲击和空化现象,强化了加工过程的进行。因超声波通过悬浮磨粒的液体介质时,会使液体介质连续地产生压缩和稀疏区域,由于压力差而形成气体的空腔,并随着稀疏区的扩展而增大,内部压力下降,与此同时,受周围液体压力及磨粒传递的冲击力作用,又使气体空腔压缩而提高压力,于是,转人压缩区状态时,迫使其破裂产生冲击波。由于进行的时间极短,因此,会产生更大的冲击力作用于工件表面,从而加速磨粒的切蚀过程. 2、超声波加工的基本原理超声加工时,高频电源联接超声换能器,由此将电振荡转换为同一频率、垂直于工件表面的超声机械振动,其根幅仅0005001mm,再经变幅杆放大至0050lmm,以驱动工具端面作超声振动。此时,磨料悬浮液(磨料、水或煤油等赃工具的超声振动和一定压力下,高速不停地冲击悬浮液中的磨粒,并作用于加工区,使该处材料变形,直至击碎成微粒和粉末。同时,由于磨料悬浮液的不断搅动,促使磨料高速抛磨工件表面,又由于超声振动产生的空化现象,在工件表面形成液体空腔,促使混合液渗入工件材料的缝隙里,而空腔的瞬时闭合产生强烈的液压冲击,强化了机械抛磨工件材料的作用,并有利于加工区磨料悬浮液的均匀搅拌和加工产物的排除。随着磨料悬浮液不断地循环。磨粒的不断更新。加工产物的不断排除,实现了超声加工的目的。总之,超声加工是磨料悬浮液中的磨粒,在超声振动下的冲击、抛磨和空化现象综合切蚀作用的结果。其中,以磨粒不断冲击为主。由此可见,脆硬的材料,受冲击作用愈容易被破坏,故尤其适于超声加工. 3、超声波加工的特点 1)工具可用较软的材料、做成较复杂的形状,且不需要工具和工件作比较复杂的相对运动,便可加工各种复杂的型腔和型面。一般,超声加工机床的结构比较简单,操作、维修也比较方便。2)超声加工的面积不够大,而且工具头磨损较大,故生产率较低3)适合加工各种硬脆材料,尤其是玻璃、陶瓷、宝石、石英、锗、硅、石墨等不导电的非金属材料。也可加工淬火钢、硬质合金、不锈钢、钛合金等硬质或耐热导电的金属材料,但加工效率较低。4)由于去除工件材料主要依靠磨粒瞬时局部的冲击作用,故工件表面的宏观切削力很小,切削应力、切削热更小,不会产生变形及烧伤,表面粗糙度也较低,可达Ra063-008um,尺寸精度可达正负003mm,也适于加工薄壁、窄缝、低刚度零件。总之,超声波打孔机是磨料悬浮液中的磨粒,在超声振动下的冲击、抛磨和空化现象综合切蚀作用的结果。其中,以磨粒不断冲击为主。由此可见,脆硬的材料,受冲击作用愈容易被破坏,故尤其适于超声加工。 4、超声加工设备的主要组成l)超声波发生器超声波发生器(又叫超声频发生器或超声波电源)的作用是将工频交流电转换为功率为20-4000W的超声频振荡,以供给工具端面往复振动和去除工件材料的能量。超声波发生器的电路由振荡级、电压放大级、功率放大级及电源组成。其可以是他激式,也可以是自动跟踪式。后者是一种自激振荡推动多级放大的功率发生器。自激频率取决于超声波振动系统的共振频率。当出于某种原因,如更换工具或工具头磨损、部件受热或压力变化等,会引起超声波振动系统共振频率的变化,可通过“声反馈”或“电反馈”使超声波发生器的工作频率能自动跟踪变化,保证超声波振动系统始终处于良好的谐振状态。为此,一般要求超声波发生器应满足如下条件: 输出阻抗与相应的超声波振动系统输入阻抗匹配; 频率调节范围应与超声波振动系统频率变化范围相适应,并连续可调; 输出功率尽可能具有较大的连续可调范围,以适应不同工件的加工; 结构简单、工作可靠、效率高,便于操作和维修。 2)超声波振动系统 超声波振动系统主要包括换能器、变幅杆、工具。其作用是将由超声波发生器输出的高频电信号转变为机械振动能,并通过变幅杆使工具端面作小振幅的高频振动,以进行超声加工。 换能器的作用是将高频电振荡转换成机械振动。目前,根据其转换原理的不同,有磁致伸缩式和压电式两种。5、熔焊应用1)熔接法以超音波超高频率振动的焊头在适度压力下,使二块塑胶的接合面产生磨擦热而瞬间熔融接合,焊接强度可与本体媲美,采用合适的工件和合理的接口设计,可达到水密及气密,并免除采用辅助品所带来的不便,实现高效清洁的熔接。 2) 铆焊法将超音波超高频率振动的焊头,压着塑胶品突出的梢头,使其瞬间发热融成为铆钉形状,使不同材质的材料机械铆合在一起。 3) 埋植藉着焊头之传道及适当之压力,瞬间将金属零件(如螺母、螺杆等)挤入预留入塑胶孔内,固定在一定深度,完成后无论拉力、扭力均可媲美传统模具内成型之强度,可免除射出模受损及射出缓慢之缺点。 4) 成型本方法与铆焊法类似,将凹状的焊头压着于塑胶品外圈,焊头发出超音波超高频振动后将塑胶溶融成形而包覆于金属物件使其固定,且外观光滑美观、此方法多使用在电子类、喇叭之固定成形,及化妆品类之镜片固定等。 5) 点焊A、 将二片塑胶分点熔接无需预先设计焊线,达到熔接目的。 B、 对比较大型工件,不易设计焊线的工件进行分点焊接,而达到熔接效果,可同时点焊多点。 6) 切割封口运用超音波瞬间发振工作原理,对化纤织物进行切割,其优点切口光洁不开裂、不拉丝。7、超声波应用于微注射成型的研究进展零件重量以毫克为度量单位或几何尺寸以微米为度量单位的微注射成型技术始於20世纪80年代,以容易实现低成本、大规模商品化生产等优势逐渐成为MEMS技术得以推广应用的关键技术之一。作为一门新兴技术,微注射成型技术在发展过程中面临着微型腔充填困难、微制品微观组织结构不均等诸多挑战。为解决微注射成型技术中遇到的困难,中南大学模具技术研究所在将超声波应用于微注射成型方面做了大量的研究。聚合物超声塑化模型及塑化过程研究图1 聚合物超声熔融塑化物理模型聚合物的塑化质量是影响微注射成型的重要因素。将超声波应用于微注射成型,首先需要研究超声外场作用下聚合物的熔融塑化过程,分析超声振动力场对聚合物粘弹性能和表观粘度的影响、超声空化场对聚合物熔融塑化速率的影响,在此基础上建立聚合物超声熔融塑化物理模型。通过对超声外场作用下聚合物熔融塑化过程的理论分析与研究,课题组研制了聚合物超声塑化与流变测试装置,并且进行了相关的超声波熔融塑化实验。实验结果表明超声波能使聚合物熔融,探明了聚合物在超声波作用下熔融过程。聚合物超声熔融塑化过程中,工具头端面和周围的聚合物固体颗粒在超声振动作用下,相互之间剧烈摩擦熔融产生熔膜,随着熔融过程的继续,工具头端面附近的固体颗粒全部熔融并形成一个圆柱形熔池,在超声振动和塑化压力的双重作用下,熔池以工具头为中心,向周围延伸,直至塑料颗粒全部熔融。【结论】:超声波加工是利用超声振动的工具,带动工件和工具间的磨料悬浮液,冲击和抛磨工件的被加工部位,使其局部材料被蚀除而成粉末,以进行穿孔、切割和研磨等,以及利用超声波振动使工件相互结合的加工方法。它利用超声波发生器将工频交流电能转变为有一定功率输出的超声频电振荡,换能器将超声频电振荡转变为超声机械振动,通过振幅扩大棒(变幅杆)使固定在变幅杆端部的工具振产生超声波振动,迫使磨料悬浮液高速地不断撞击、抛磨被加工表面使工件成型。超声波加工广泛就用于加工半导体和非导体的脆硬材料,如玻璃、石英、金刚石等;由于其加工精度和表面粗糙度优于电火花、电解加工,因此电火花加工后的一些淬火钢、硬质合金零件,还常用超声抛磨进行光整加工;此外,还可以用于套料、清洗、焊接和探伤等。航空航天技术的发展对材料性能的要求愈来愈高,如比强度和比刚度高、有一定的耐高温和抗低温性能、有良好的耐老化和抗腐蚀能力、有足够的断裂韧性和良好的抗疲劳性能。因此,高温合金、钛合金、高强度钢、先进复合材料和工程陶瓷等材料得到了越来越广泛的应用。再者,功能晶体材料由于其优异的物理、化学和光学性能在航空航天、国防军工、信

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论