IPCC说了什么.docx_第1页
IPCC说了什么.docx_第2页
IPCC说了什么.docx_第3页
IPCC说了什么.docx_第4页
IPCC说了什么.docx_第5页
已阅读5页,还剩42页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

IPCC说了什么?(一)大气中的二氧化碳from科学松鼠会by科学松鼠会17 people liked this作者:橡树村/s/blog_628d8c2f0100mk7z.html许多人对环保与气候议题感兴趣,却不知如何听取可靠的声音。许多人不相信“人类活动导致全球变暖”,但质疑时的根据却站不住脚。从今天起,我们将陆续授权转载橡树村老师的系列文章IPCC说了什么。正如橡树村所说:“无论正方反方,真要认真讨论(气候变化)这个问题,至少应该对这个报告有所了解,看看IPCC究竟讲了什么,或者说,主流科学界究竟讲的是什么。”橡树村:人类有比较全面的气候和影响因素的观察也就是从1950年代开始的,相对准确的数据甚至要到1980年代以后。超出这个时间段范围的结论,可靠性都要大打折扣。如果你仔细看过IPCC报告,会发现IPCC的结论还是很慎重的。见习松鼠poguy:IPCC的成立是在科学界已经基本上就人类活动可以导致全球变暖的科学事实达成共识的情况下成立的。虽然它本身是在1988年才成立的,但人类活动可导致全球变暖的结论则是在20世界70年代就基本建立了。真正关心气候变化问题,可以看看IPCC报告里面的三个中文文件。http:/www.ipcc.ch/publications_and_data/ar4/wg1/zh/contents.html最近几年,气候变化很是一个热门的话题,争论非常热闹。不过很有趣,在大众媒介中参与讨论的众多声音里面,无论正方反方,对气候问题的误解非常多。支持气候变化与人类活动有关这个观点的,有不少各种各样的奇怪的误解,很是误导了大众;反方呢,就更热闹了,反对各个环节的观点的都有,比如有反对气候在变化的,有反对气候变化与人类行为相关的,有反对人类行为是气候变化的主要原因的,各种反对观点之间也并不统一。不过更加有趣的是,很多反对的实际上是自己对这个问题的误解,自己画一个明显错误的靶子然后去攻击(有一些靶子也是正方的支持者的错误宣传所导致的),然后进而否定整个气候变化与人类活动关系的结论。这样混乱的争论,对于不是相关专业的人看来,自然是理不清头绪。关于气候变化的最全面的科学资料汇编是联合国国际间气候变化专门委员会IPCC所发布的报告,目前已经出到第四版,称为AR4,2007年发布,第五版刚刚开始编纂。无论正方反方,真要认真讨论这个问题,至少应该对这个报告有所了解,看看IPCC究竟讲了什么,或者说,主流科学界究竟讲的是什么。不过从我接触到的辩论来看,真读过这个报告的还真不多。报告可以在IPCC的网站下直接下载,全文是英文的,不过提供了中文的综合报告以及略微详细的技术摘要。对于普通民众来讲,读这个摘要就足够了。我对中文资料孤陋寡闻,没见到中文资料里面系统地对这个报告的通俗化解读,在这里做一个尝试。我不是相关专业的,只能是从一个具有一定科学训练的读者的角度进行解读,欢迎相关专业人士指出错误。谈论人类活动对气候变化的影响,大气中的二氧化碳浓度的变化应该是最基本的概念了,那就从大气中的二氧化碳浓度开始说起。人类测量大气中的二氧化碳浓度的年头也不算短了,在19世纪的时候就开始进行。这些不同地点、时间得到的不同的二氧化碳浓度数值,变化非常大,基本上没有规律。早在1920年代,就已经有人注意到植物的活动会影响到农村地区的大气二氧化碳浓度,而燃料使用又会影响到城市大气的二氧化碳浓度。按照现在的知识,这个结果很好理解,植物的光合作用、呼吸作用是会影响其周围地区的二氧化碳浓度,燃料燃烧排放的二氧化碳,自然也会影响城市地区的二氧化碳浓度。不过很长时间里面对与大气中二氧化碳浓度的测量的精度都不够,也缺乏系统地观察。所以这些测量的数据的可靠性是很值得怀疑的。在这种测量精度的情况下,人们是无法得知二氧化碳的浓度在不同地区是否有区别,是否有变化规律的。实际上,当时极少有人关心大气里面二氧化碳的问题,普遍地认为,全球范围内的二氧化碳浓度是没有什么规律的,至少,各个地方应该是很不同的。第一篇高精度的监测大气中二氧化碳浓度的文章发表在1958年,作者是Keeling。也许有必要讲一讲Keeling的成长历程,给不务正业的人们一点信心。Keeling在伊利诺伊大学念的是化学,没念完,最后以文科专业毕业,很神奇?尽管如此,他母亲的老邻居的孩子正在西北大学教书,还是给了他一个上研究生的机会,专业还是化学。这似乎是一个学术腐败的例子。Keeling对化学还是没兴趣,选课的时候,竟然随便选了地质学。弄不懂西北大学这是怎么个学制,反正Keeling念研究生上的是地质学的课,不过还是拿到了化学的博士学位。应该说Keeling做的工作还是不错的,他的博士是关于使用中子轰击聚乙烯的,涉及到核化学和高分子化学两个分支,他的工作上了专业杂志的封面。这个时候的化学博士非常好找工作,工业界有很好的位置,聚乙烯和核化学也都是很时髦的东西,不过Keeling再也不想做化学了,拒绝了多个工作,一心一意要做地质学,最终跑到了加州理工做地质化学的博士后。Charles D Keeling 全球气候变化研究的先驱,2005年逝世Keeling的博士后题目是要从矿石里面提取铀,这就要砸石头,大约算是地质专业人士的基本功?他对砸石头不感兴趣,天天东游西逛,老板倒不在意,索性给他换题。这一次,他要测量与石灰岩接触的水里面的碳酸盐含量,与大气中的二氧化碳浓度比较,看有没有平衡关系。这个题目Keeling 喜欢。也就是这个题目,导致了精确测量水中和气体中二氧化碳含量的装置的出现。精度达到了测量值的千分之一,优于当时任何其他测量设备。实验室的实验做完了,Keeling就要测量真实环境的二氧化碳,他先在系里的楼顶上取样。这时候出了麻烦,得到的大气中二氧化碳的数值变化太大了。浓度变化的原因不难找,Keeling所在的Pasadena,怎么说也是个城市,周围有工业污染,有汽车,等等,这些都是二氧化碳排放源,这些都在改变着城市大气中的二氧化碳浓度。要寻找一个不受人类行为干扰的,可以作为参考的二氧化碳浓度,Keeling就需要到远离这些污染的地方测量。于是,Keeling就跑到了太平洋边上的Big Sur州立公园。在风景如画的地方工作总是令人舒心的事情,在Big Sur公园,Keeling忽发奇想,决定在每隔一两个小时就取一次样。对于Keeling所作的研究来讲,这个做法是没有什么必要的,Keeling后来也给不出这么做的原因。可能是人高兴了,总会做一些自己解释不清楚的事情。正好,同一个组里面有人在研究大气中二氧化碳中同位素的丰度,样品里面的碳同位素的丰度也就顺便测试了。这就是世界上第一个系统观测一个地区大气中二氧化碳浓度变化的试验的来源。Keeling的研究方向很快就证明是没前途的,所以他很快就放弃了对水中碳酸盐浓度的测试。不过气体里面的二氧化碳浓度引起了Keeling的注意:二氧化碳浓度,以及碳13的丰度,是有周期性变化的。Keeling发现晚上二氧化碳的浓度要高于白天的,碳13相对碳12的比例则有相反的变化趋势。 Keeling开始扩大测量范围,北到加拿大,南到墨西哥,找人迹罕至的森林去测量。这些测量导致了一个有趣的发现,下午的时候,二氧化碳浓度总是维持在 310ppm,和地点无关,晚上的浓度变化非常大,并且很难找到规律。碳13的丰度,在下午也是稳定的,与地点无关,而晚上,碳13的丰度变化也很大。不过碳13的丰度与二氧化碳的浓度看起来是有关系的。很奇怪的结果。当时的文献,说极地的二氧化碳浓度大约在150ppm,赤道附近的应该在350ppm。而Keeling的测试也跨越了不小的纬度范围,得到的最低值竟然是恒定的。然后Keeling把测试扩展到了没有森林的地方,去高山,去沙漠,甚至去大洋,发现,这些没有植被的地方,二氧化碳浓度与森林地区下午的二氧化碳浓度非常一致,碳13的丰度也同样一致。这就引起了一个问题,按说,下午是光合作用旺盛的时候,应该消耗二氧化碳,这样这个时候的二氧化碳浓度,就应该低于没有光合作用的地方的数据。为什么森林这个时候的二氧化碳浓度,和荒芜之地的二氧化碳浓度一样呢?解释后来找到了。Keeling的测量都是在良好的天气情况下测得的,这个时候,经过阳光的充分照射,森林附近的气体与高处的大气有非常好的混合,这样,森林附近的气体基本上可以代表大气的二氧化碳浓度。而在夜晚,这种混合是非常不好的,在地面会有一层高浓度的二氧化碳,仅代表靠近地表附近大气的二氧化碳浓度,由于影响这层二氧化碳的因素不少,夜间观测的数值差异就很大。这就导致了一个重要的结论:大气的二氧化碳含量,在很广泛的区域内,是有一个固定值的。在Keeling开始进行测量的1950年代后期,这个数值大约是310ppm。这个发现引起了美国国家气象局的兴趣。气象局正好有测量大气中二氧化碳浓度的计划,在夏威夷刚刚建立一个观测据点可以用来观测,Keeling提议增加极地的观测点,同时在这两个地方开始使用可以连续测量二氧化碳的装置。与此同时,在多个气象观测站也开始送样测量二氧化碳浓度,包括飞机在飞行中高空取样等等。这个计划交给了Keeling主持。在夏威夷的观测从1958年三月开始,连续监测一开始就发现了二氧化碳的浓度与季节有关。二氧化碳浓度从三月份持续上升到五月份,然后开始下降,到九月份达到低谷,开始上升。这个周期性变化,在1959年完全被重复。这个变化与北半球的植物有关,春天植物的叶子增多后,光合作用加强,大气的二氧化碳浓度会降低,而秋天植物开始落叶后,光合作用减弱,二氧化碳浓度就开始上升。1961年,Keeling又建造了一套精确测量装置,这一次,精度提高到了0.1ppm。飞机取样的结果也出来了,与夏威夷的观测结果吻合,在空中同样有二氧化碳浓度的季节性变化。 Keeling这个时候也发现,在北半球,这个二氧化碳年度周期波动很大,在南半球,这个波动很小。这可以用北半球植被比南半球的植被多很多来解释。夏威夷这个地方的观测,到现在还在进行,拥有最完整的连续观测记录。早在1950年代,就有人总结了大气中二氧化碳的的浓度,认为大气中二氧化碳浓度在上升。由于当时测量的误差太大,这个结论的可靠性非常值得怀疑。不过 Keeling也开始留意这个方向,所以在自己的测量计划开始的时候,就有长期监测的打算。到1961年,Keeling把新数据与自己早期的数据比较,就已经发现了二氧化碳浓度的略微上升,到1962年,连续两年多的观测,已经可以肯定这个趋势,这个时候观测到的二氧化碳浓度增加,是每个月增加 0.06ppm。当然这个时间还太短,说明不了什么问题。这个趋势到1960年代后期就很明显了,1970年,大气中二氧化碳浓度已经增加到 320ppm,10年增加了7个ppm,并且隐约可以看到增加的速度在变快。到1970年代末期,Keeling的这个观察终于引起了人们的重视。Keeling测定的夏威夷大气二氧化碳浓度的变化1980年代开始,其他人加入了观测队伍。二氧化碳监测站的数量开始增多,遍布六个大洲,数据后来也统一提交给世界气象组织建立的世界温室气体数据中心 WDCGG汇总。研究也很快扩展到了一些相关的气体以及同位素的监测。有代表性的,是下面这个图。这里面显示了1970年到2005年夏威夷(北纬19 度)和新西兰(南纬41度)两个观测时间最长的地点的结果。上面图里面的黑线的是夏威夷的,蓝线是新西兰的。这里面二氧化碳浓度长期的上升趋势非常明显,每年的周期也很明显,并且,北半球的二氧化碳浓度年度波动明显高于南半球的波动。仔细看的话,南北半球波动的波峰波谷也是相反的,符合季节性差异的解释。这个图右下的两条线是氧气和氮气的比值的变化,也有明显的周期性和长期变化规律。下面的图的红线是大气中碳13与碳12的比例的变化,可以看到碳13的变化也是很明显的,这个解释后面谈。黑线是每年化石燃料和水泥行业排放的二氧化碳的量,单位是十亿吨碳。这里没有包括土地变更导致的碳排。这张图里面可以看出,从1960年代开始的大气二氧化碳浓度增高的趋势,还是非常明显的。二氧化碳及相关数值变化不过精确的仪器测量最早也就是1950年代开始的,这些数据最多就是在说,从1950年代以后,大气中二氧化碳的浓度的确在增长。要是觉得Keeling 早期的工作代表性不足,那么在1980年代甚至1990年代全球上百个观测站的数据的结果,应该还是很充分的。到了1990年代以后,对于数据的要求也越来越严格,实际上Keeling这个夏威夷站的数据由于有0.5ppm的偏高(这个观测站海拔3400米,有点太高)已经被排除在计算平均数的测量站范围之外,当然这种系统性的偏差是可以校正的,不影响夏威夷站长期观察的价值。增长的幅度的,按照一些文献的数据,的确有增快的趋势。IPCC的AR4收录的最新的二氧化碳浓度数据,是SIO的9个站点与NOAA/GMD的40个站点的平均结果。SIO站点的数据是378.75+-0.13ppm,NOAA /GMD的平均值是378.76+-0.05ppm,综合起来,2005年大气二氧化碳浓度已经达到了379ppm,比Keeling1960年观察到的 313ppm高出了66个ppm。从1960年到2005年,大气中二氧化碳平均增长率是每年1.4个ppm,而1996年到2005年十年,这个增长率是每年1.9个ppm。比较我们前面提到的,1960年代平均增长率只有每年0.7ppm,这个增幅的变化,也是明显的。这样,1960年以后,大气中二氧化碳浓度的增加就是非常可靠的结论了。那么这以前的呢?没有可靠的直接测量数据,二氧化碳的浓度怎么推断呢?IPCC说了什么?(二)冰封的信息from科学松鼠会by科学松鼠会13 people liked this作者:橡树村可靠的大气中二氧化碳浓度的测量,最早也就是1950年代开始的。这之前的直接测量数据也有一些,但是这些数据误差很大,并且也没有人向Keeling那样仔细排除人类活动以及植被的干扰,所以这些数据,就放在故纸堆里面吧。时间过去了就是过去了,回不来的,直接测量历史上的数据已经不可能实现了。那么人们怎么知道这之前的大气二氧化碳浓度呢?在1980年代,人们找到了一个方法:测量冰芯里面气泡的气体含量。在地球有一些地方,比如高山,比如南极,北极,一年四季的气温都低于零摄氏度。气温低不耽误这些地方降雪,而因为气温常年很低,这些地方的降雪基本上是不会融化的,逐渐沉积的最终形成冰川。雪是固体形态的水,也可以说是冰,但是这种冰并不是密实的一个整体,而是细小的固体堆积起来的,很蓬松,里面有不少空气。也就是说,下雪的时候的空气,就被存在了雪里面。等到雪停了,这里面的空气就会与外界环境的空气进行交换,有交换就有更新,雪里面的空气就不是下雪的时候的空气了。由于这些地区气温常年低于零摄氏度,这些地方的旧雪没有融化,就有新雪逐渐沉积,越积越多。新的雪自然就堆积在旧雪的上面。等到雪上面的新雪沉积了一定的厚度,那么旧雪就要被压缩了,这就是积雪。积雪的密度要比新雪的密度大,时间越久的积雪越在底层,承受的压力越大,密度逐渐增加。积雪能够被压缩,实际上是因为里面的空气被挤出来了,里面所包容的空气就越来越少。但是这个时候,积雪里面的空气仍然是与外界的空气连通的。等到积雪的密度达到一定的程度,气泡就会被完全密封,这个时候,气泡就不再与外界的大气进行交换,气泡密封的时候的大气的信息就得到保存。这个时候,上面积雪的厚度可能有几十米甚至上百米了。这就是说,人们可以通过到这些地方来采集冰芯的样品,通过对不同年代沉积的冰里面所包含的气体进行分析,来了解地球过去的大气的信息。当然实际操作上要复杂很多。首先就是冰芯的采集地点。采集的地方,一定要保证即使在一年里面最热的时候,积雪也不能融化。一旦冰雪融化了,成了水,就会迅速和其他时代的东西混合,信息就没有什么价值了。对于气体分析来讲,一旦积雪融化,那么封闭的气室就不再封闭了。即使后来这些水再次凝结,但是时代信息已经很模糊了。所以取样的地方,要尽可能找一直很冷的地方。采取冰芯也涉及到一些技术问题。采样的方法,很像是中国古代盗墓贼使用的洛阳铲,当然也有了改进。取样的是一个长长的直筒,中间是空的。筒的外周底部是锋利的边缘,可以用来切割冰层。这样就可以通过把这个直筒施压,压进冰层里面去,直筒的里面就会充满了冰样,得到所谓的冰芯。一般这个直筒只有6米长,而实际上采样往往达到上百米上千米,这样就需要在同一个位置反复采样。这里面也有一些技术问题,就不细说了。采集冰芯取了冰芯,就要知道这些冰层是什么时间形成的。采集到的冰芯也是有层的,有点像年轮。因为每年气候的周期变化,形成的冰层会有一些区别,这样就会出现年轮一样的痕迹,一圈一圈数下去,大约就可以知道冰层的年代。有的时候,这个差距肉眼看着并不明显,但是可以通过化学物理的方法来寻找这个痕迹。但是这个方法对于比较近的年代还说得过去,对于久远的年代,就不方便了。冰层毕竟不是年轮,在比较近的时代,有可能一个季度就会形成一层,这个大约还可以判断出来,但是很久以前形成的冰,由于在高压环境下的时间比较长,几年甚至几十年的冰层会混合在一起,这个数数的方法就不能用了。这就需要借助其他手段。还好有一些可以作为参考的判断年代的依据。地球经常会发生一些很大的地质事件,特别是大火山喷发之类的,喷发出来的尘埃以及一些特殊的化学物质,一些时候可以覆盖全球,自然也会飘到冰川。这样,在积雪的时候,这些尘埃和化学物质也就被保存了下来,于是,分析这些尘埃和化学物质所处在的冰层,结合历史上的大的地质事件,就可以判断某个冰层形成的大致年代。如果有了几个这样的参考点,那么这几个参考点之间的冰芯沉积速度就可以估算了,于是,基本上可以推断出各个冰层的大致年代。这个年代的测定,随着冰层的久远,误差也越来越大,不同的估算方法之间可能也会带来年代判断的差异,所以对于久远的历史,有几十年的误差是正常的。不过随着技术手段的发展,这方面的精度一直在进步。冰芯下一个问题就是气体的年代的确定。冰这个东西,形成了以后,由于不融化,除了极少量的挥发,就留在冰层上面了,冰所蕴藏的信息,也就可以代表冰形成的那个年代的信息。但是气体不是这样。前面讲了,积雪里面的气体,在很长的时间里面,都是要与外界进行交换的,一直到把气室封闭。这样,冰层里面气体的年代,就要比冰的年代年轻。这个差距还是不小的,各个地方也很不同,甚至不同种类的气体封闭的年代都有区别。一般来说有几百年的时间,目前发现的纪录是7000 年。这个问题知道了就要处理,产生了不少处理方法。在2005年的时候,比较被接受的是计算被封闭的时候的积雪密度,结合积累速度、当时的温度(也是间接测量出来的)等来推测这个封闭年代与冰层年代的差距。在沉积速度快的时候,比如格陵兰的冰川,这个计算精度还是不错的。成长缓慢的冰川,这个精度还不大令人满意,不过这方面的技术也在进步中。冰芯里面的气泡气体有可能有污染的。比如其他物质缓慢反应释放二氧化碳,特别是一些尘埃里面的有机质,还有水里面的碳酸盐。不同冰样的污染是有区别的,不过这个可以通过比较不同的冰样来进行初步判定。这些反应速度也是很慢的,有的几千年的冰样仍然保留着那些没有反应的物质。这个污染对最终结果会有一些影响,需要考虑。最后就是气体的代表性。上一节讲过,大气中的二氧化碳浓度被认为是基本均一的,在这些没有人类活动影响,也没有植被的地方,当地空气中的二氧化碳浓度就可以代表大气中的二氧化碳浓度。于是,分析这些封闭在冰层里面气泡,就可以了解冰层封闭的时候的大气状态。这就是目前人们研究古代大气二氧化碳浓度变化的方法。结果是什么样子呢?不同地点的冰川给出的结果还是很相似的,AR4里面引用的数据见下面左上角的图给出的两万年来的二氧化碳浓度变化,可以看出两万年前,大气二氧化碳浓度只有190ppm,平稳一段时间以后在1万3千年前升高到了240ppm,在大约1万年前升高到270ppm。人类的文明最早也就是这个时候了吧?在人类文明大部分时间里,大气中二氧化碳浓度基本上都在260-280ppm之间,最近的6000年有逐渐上升的趋势,最近两千年基本在保持 280ppm附近。然后,就是最近一百多年的大气二氧化碳浓度突然增高。从现有数据来看,这个增高的速率至少是最近两万年以来所没有的。在AR4的技术摘要中,对于历史上大气二氧化碳浓度的变化,给出的结论是:在工业化前的8000年里,大气二氧化碳浓度仅增加了20ppm,几十年到百年尺度上的变化少于10ppm,并且可能主要是由于自然过程。然而,自1750年以来,CO2浓度已经增加了近100ppm。两万年来的温室气体浓度变化目前有的地方可以提供80万年以前的信息,不过考虑到数据的可靠性,准确性等,一般只使用最近65万年的资料。AR4里面提供的65万年来主要温室气体在大气中的浓度变化数据见下面。从这些数据里面看,大气目前的二氧化碳浓度,在过去65万年里面,也可能是最高的。65万年以来的温室气体浓度变化IPCC说了什么?(三)温室效应from科学松鼠会by科学松鼠会9 people liked this作者:橡树村前面说了,现在大气中的二氧化碳浓度,基本上是65万年以来的最高值,超出了65万年以来的波动范围。要是说太久远的数据精度还不够,那么两万年以来,目前大气中的二氧化碳浓度的确是最高值。使用1750年作为人类工业化的起点,工业化前的大气二氧化碳浓度是280ppm,2005年,这个数值达到了 379ppm,增加了100个ppm。这意味着什么呢?AR4技术摘要WG1 TS2.1.1里面的描述是:自工业化时期以来,大气CO2增加所产生的辐射强迫为+1.660.17Wm2,其贡献显著大于本报告考虑的所有其它辐射强迫因子。在1995至2005年间,大气CO2增长导致其辐射强迫增加了20%。2.3, 6.4, 6.5这个辐射强迫是什么东西?地球的能量收支,都是以辐射的形式来进行的。热的传递有三种方式,传导,对流,辐射。对于地球这个天体来讲,能量的来源是太阳。太阳与地球没有直接接触,两个天体之间也是真空,既不能传导,也不能对流,也只有辐射这一个方式来进行能量传递。地球对外也要散发能量,同样是因为地球周围的真空存在,既不能传导也不能对流,也只有辐射的形式把能量散发出去。实际上天体之间进行能量传递,也只有辐射这个方法是可行的。辐射强迫里面的这个辐射,实际上说的就是地球的能量吸收和散发的方式。地球的能量是大致平衡的。也就是说,地球从太阳得到了多少能量,也基本上需要释放出去多少能量。不过实际情况要复杂一些。地球不是一个均匀的物体,地球外面有一圈大气,大气还分了层。最靠近地球表面的是对流层,10-20公里厚,不同地区不同季节厚度有变化。人就居住在这个对流层里面,绝大多数的活动也都发生在对流层里面。之所以叫对流层,是因为地表把最底层的大气加热,热空气受热以后上升,然后有冷空气下降补充缺失的空气,形成对流。大气中的绝大多数水蒸气都在这个对流层里面,水给大气增加了很多乐趣,什么云雾雪雨,都是水在不同条件下的形态,自然也增加了大气行为的复杂性,这样才有了风雨雷电等等各式各样的气候变化。气象学研究的主要对象就在这个对流层。对流层外面是平流层,距离地面10-公里以上。在平流层,低于30公里的高空气温变化不明显,保持在零下55摄氏度,所以也叫做同温层,再向外,是中间层、暖层、散逸层。因为影响具体气候的主要在对流层,而能量对于气候变化影响巨大,所以对流层与平流层的交界的地方的能量平衡,就成了研究的对象。描述对流层顶层(实际上说的是对流层和平流层的交界)的能量偏离稳定状态的指标,就是这个辐射强迫。大气也是分层的简单的来说,这个辐射强迫,就是对这个对流层顶的能量进出净值的定量描述。来往于这个层面的能量还是挺热闹的,外来的,是太阳的直接辐射,向外的,有地表直接向外的辐射,有大气向外的辐射。而影响这些辐射变化的因素又有很多,比如太阳黑子,比如火山爆发,比如温室气体,都对这个层面往来的能量有影响。这些具体因素对这个层面的辐射的影响,又可以单独分析,最终汇合成整体的这个层面上能量的变化。所谓的二氧化碳的辐射强迫,就是因为二氧化碳在大气中的变化,而导致的辐射能量的变化。为了描述方便,方向指向地面的辐射被定义为正值,也就是说太阳辐射如果增强,那么这个辐射强迫就是正值,而太阳的辐射如果减弱,那么这个辐射强迫就是负值。相对于一个稳定的状态,如果综合的辐射强迫成了正值,那么留在对流层内部的能量就要增多,如果综合的辐射强迫成了负值,那么留在对流层内部的能量就要减少。留在对流层内部的能量,与地表的温度有一定的关系,所以这个辐射强迫就与地球的温度有关系。这个概念,在研究气候变化的时候是非常重要的。研究各个因素对气候变化的影响,主要的研究对象就是这个辐射强迫。IPCC给出的描述是辐射强迫是由于气候变化外部驱动因子的变化造成的对流层顶净辐射照度发生的变化。既然是变化值,就需要有参考值。IPCC使用的参考值,是1750年的状态,并且在处理的时候,一般都是在指年平均的数值。 IPCC研究的辐射强迫,既包括大自然自1750年以来的变化导致的辐射强迫,也包括人类行为自1750年以来导致的辐射强迫,并对这两者进行比较,来判断哪一个是辐射强迫变化的主要原因。辐射强迫的单位是瓦每平方米,这个面积单位,指的是对流层顶的面积。那么二氧化碳为什么会导致辐射强迫呢?因为大气中的二氧化碳会影响地球对外的辐射。这个作用,就是著名的温室效应。介绍温室效应先要详细描述一下地球的能量收支情况。前面讲了,地球从太阳以辐射的形式接收能量,自己也以辐射的形式向外散发能量。太阳辐射的能量,按照AR4引用的文献,在白天,到达大气顶层表面,平均是每平方米1367瓦特。这要扣除黑夜,以及角度问题,平摊到整个大气的顶层,要除以4,结果就是每平米342瓦。这每平米342瓦里面,有一部分被大气中的云层、气溶胶,以及大气本身反射,这个数值大约是每平方米77瓦。地表的水面、冰面、雪面、沙漠等平均下来也要反射每平米30瓦,总共反射了107瓦。反射掉的总共有大约30%。大气本身也可以直接吸收一部分,数值是每平米67瓦。余下的每平米168瓦被地表吸收。简单的说,地表吸收了太阳辐射的将近50%的能量。太阳辐射基本上在可见光谱波段,也叫做短波辐射,对于这个波段的辐射,大气的组分变化对于大气的反射和吸收的影响都很小。能够对这个波段的辐射产生较大影响的,有太阳辐射本身的变化、云层以及气溶胶的变化,这三者也就有自己的辐射强迫,以后会专门讲。地球向外的辐射是长波辐射,或者说热红外辐射。平均下来,地球从太阳接收的能量,应该等于地球向外辐射的能量。因为地球向外的辐射与地表的温度有关,就可以计算要实现这个能量平衡,地表温度应该是多少。这个温度,只与太阳的表面温度,太阳的半径,地球和太阳之间的距离,以及地球的反照率有关。按照前面描述的数值,可以计算地表的有效温度,应该是零下19摄氏度。地球的能量收支平衡。细节以后说明但是实际上,地球表面的平均温度是14摄氏度,比零下19摄氏度高了33摄氏度,造成这个差距的,就是温室效应。地表向外辐射的红外线,可以被大气中的一些组分吸收。实际上地表向外绝大多数的热红外辐射都被大气的这些气体吸收了。这些能量被大气吸收了之后,再向周围散发。这个散发就不仅仅是对外的了,可以是各个方向的。向外的一部分,最终散发出了对流层,完成地球的对外辐射和整体能量平衡,而其他方向的,就有一部分被反射回到了地面,增强了对地表的绝对辐射。这就等于是把热量留在了对流层和地表,从而加热地表和底层大气,造成底层大气和地表温度升高。这个效应就叫做温室效应。而当大气中具有温室效应的物质增多以后,大气就会吸收更多的地表放射的辐射,从而把更多的辐射反向回馈到地表或者保留在底层大气,从而加热地表和底层大气,这就叫增强的温室效应。当然要确定地表和底层大气的能量是否增加,不能只看温室效应一个因素,还需要考虑太阳辐射的变化、云层和气溶胶反射的变化,以及其他各种会影响地表能量平衡的所有变化,才能得到变化后影响的净值。这个复杂的模型我们以后再谈。对于单一的具有温室效应的物质来讲,其浓度的变化,对于这个地表低层大气体系的影响,就可以使用这个辐射强迫来描述,来看这种物质单独的影响。对于二氧化碳来讲,其浓度的变化导致的辐射强迫,是可以计算的。这个计算还是挺麻烦的,要通过对光谱特征的仔细分析,一点一点地来计算其对红外辐射的吸收能力,也有的科学家使用其他方法估算。这方面的研究也一直有发展。IPCC的第一次报告FAR里面使用的计算方法,后来被发现比实际值偏高,所以在第三次报告TAR里面有所修正,AR4仍然使用了TAR的计算方法。AR4的报告到了总结阶段,2006年,有了一篇对光谱的详细分析文章计算这个辐射强迫,与 AR4使用的数值差距在10%误差以内,满足90%置信水平的要求,所以AR4对这个计算方法并没有修正。后来又有文献说辐射强迫综合值有可能会有20% 的误差,这些也只能等到第五次报告AR5里面才有体现了。IPCC的AR4给出的结果是,自工业化以来,大气中二氧化碳浓度的变化导致的辐射强迫是1.66+-0.17W/m2。扣除掉反射,太阳提供给地球的能量也就是235W/m2,二氧化碳浓度增高一项就导致了相当于太阳净辐射0.7%的能量变化,还是很可观的。IPCC说了什么?(四)碳循环from科学松鼠会by科学松鼠会11 people liked this作者:橡树村好,到现在,我们已经说清楚了大气中的二氧化碳浓度的确在增长,二氧化碳浓度增长的确会增强二氧化碳所带来的温室效应。那么,这些增加的二氧化碳,和人类 的活动有关吗?是不是大自然自己心血来潮?在大气二氧化碳浓度比较清楚的65万年里面,二氧化碳浓度不也是在一直变化吗?凭什么把现在的变化归结到人类的 活动头上?要解释这个疑问,我们先看看大自然自身的碳循环。顾名思义,碳循环就是含碳的物质在整个自然界中的循环。下面这张图是一个碳循环的示意图,是2006年的时候对1990年代的碳循环比较完善的研究成果。 黑色的是线条和数字显示的是大自然自身的碳循环,或者说是1750年前后的碳循环状态,红色的是人类所进行的干扰。我们先看黑色的线条,也就是人类工业化 之前大自然的碳循环。图里面使用的数字的单位,是十亿吨碳,而不是二氧化碳的质量。这是为了研究方便,因为在碳循环的过程中,碳的化学形态是在改变的,使 用碳作为衡量单位,比二氧化碳要方便。两者也很方便换算,碳的原子量是12,二氧化碳的分子量是44,这样,一吨碳,就折合3.67吨二氧化碳。另外一个 要指出的,是碳循环的波动是很大的,每年与每年之间有很大的差别,但是长期趋势是平衡的。这个图里面,所列出的也就是平均值。全球碳循环这个图说,没有人类干扰的时候,大气中的二氧化碳总量是5970亿吨碳,相当于2.2万亿吨二氧化碳。每年,平均有1200亿吨碳通过光合作用被转化成其 他形式,或者说通过光合作用被固定。光合作用把二氧化碳转变成有机物。植物自身有呼吸作用,把一部分有机物转变成二氧化碳释放进入大气,动物吃了植物,也 会把部分有机物通过自身的呼吸作用转变成二氧化碳释放入大气。一部分植物的有机物进入土壤,土壤里面的有机物,在有氧条件下会缓慢氧化,最终也以二氧化碳 形式是放到大气里面,或者在厌氧条件下,形成甲烷进入大气。植物的自然的火灾也是植物里面固定的碳进入大气的一个方式,不过总的来说,植物的作用基本上是 在从大气中吸收二氧化碳的。加在一起,动植物的呼吸作用,大约把1196亿吨碳返回大气。这就是说,植物每年可以固定碳4亿吨。这些碳,会被植物保存几十 几百年。在工业化之前,植被和土壤里面的碳,总量是2.3万亿吨。二氧化碳还可以部分溶解在水里面,地球的表面有70%都是海洋,这么大的水体里面,自然要溶解不少量的二氧化碳。二氧化碳在水里面的形态,可以是气态的二 氧化碳,也有碳酸氢根离子和碳酸根离子的形式,这三者受化学平衡的制约,所以考虑的时候,把这三种化学形态的总量作为整体来考虑,这三者在一起,也有一个 专门的名词,叫做可溶性无机碳,缩写是DIC。同样,溶解在海洋表面这些可溶性无机碳,也会因为直接与大气接触,而在一定条件下把溶解的二氧化碳释放出 来。不同温度压力情况下,二氧化碳在水里面的溶解度是不同的,世界各地海平面的气压变化相对不算大,但是温度变化可是不小,而二氧化碳在水里面的溶解度, 随着温度的升高会下降。这就是说,在冬季,高纬度的地区水温寒冷,二氧化碳在水里面的溶解度高,这样,二氧化碳就会被海水吸收;而在低纬度地区的温暖海 面,以及夏季的时候,二氧化碳在水里面的溶解度低,溶解在水里面的一些二氧化碳就会被释放出来。这个现象,结合子午线环流,被称为二氧化碳的溶解泵。总体 来说,海水对于二氧化碳的一呼一吸是基本平衡的。在工业化之前,每年海洋从大气中吸收700亿吨碳,同时释放706亿吨碳。很显然,新溶解在海水里面的二氧化碳基本上都在海水表层。海水表层大约有总量9000亿吨的碳。在这里的二氧化碳,可以重新进入大气,也可能进入深层的海 水。二氧化碳在浅层海水停留的时间,大约是几年的样子。海水表层还有丰富的浮游生物,总量是30亿吨碳,这些水生植物可以把海水表层的二氧化碳通过光合作 用转变成为有机质,这个过程,被称作二氧化碳的生物泵。这些有机质,可以形成可溶性的有机碳,DOC,或者随着生命体的死亡,沉到深层的海水里面。由于各种各样的反应的存在,有机碳的寿命总是要短一些的,最终这些有机碳也会变成无机碳,也会有一小部分沉积在大洋底部。每年,这些浮游生物从海水表层吸收的碳是500亿吨,同时有390亿吨返还给海水表层,进入中层海水的有机碳是110亿吨。表层海水下面就是中层海水,中层海水下面就是深层海水。中层和深层海水里面,含碳量高达37.1万亿吨碳,是碳循环里面质量比例最大的部分。浅层海水向中 层海水输送无机碳的速率,是每年902亿吨,大约是浅层海水碳总量的十分之一,不过同时中层海水也向浅层海水输送无机碳,速率是每年1010亿吨。不同层 的海水的混合速度很慢,中层海水的混合需要几十年上百年的时间来进行,而深层的海水则需要上千年的时间来完成。最终会有一些碳沉积在海洋底部,速率大约在 每年2亿吨的样子。沉积在海底表面的碳,总量是1500亿吨。这些数字可以看出海洋对于吸收二氧化碳来讲,容量是非常大的,不过要注意,由于不同层的海水之间进行交换的时间尺度很不同,在考虑海水吸收二氧化碳的效果的时候,需要考虑扩散到各层的时间因素。生物泵和溶解泵一起构成了海水的碳循环。在全球范围来考虑,影响这个碳循环的因素非常非常多,比如洋流情况,海水表面温度情况,盐度,各个层的分布,当然还不能忽视冰盖的影响,海水中溶解的营养物质的数量,也会直接影响生物泵的运行情况,不同地区的浮游生物的种类等等,也对这个碳循环的复杂性有所贡献。已经很热闹了?还有呢。陆地上的碳循环,与海洋的碳循环也不是独立的。河流是在向海洋输送碳的。这里面大多数是无机碳,也有少数的有机碳,又可以溶解在水里面的,也有一些颗粒形状的。这个量,每年大约是8亿吨碳。这8亿吨碳里面,大约有4亿吨碳来自植物,另外有2亿吨左右碳是河水从大气吸收的二氧化碳,还 有大约2亿吨碳是河水从岩石表面得到的二氧化碳。这个量不同年度是有很大变化的,不过长期平均下来还是有规律的,可以平衡的。除此之外,还有一些规模更小 的行为也在碳循环之内,比如土壤里面的碳的形态的转变,岩石的风化、沉积,这些都是在很长的地质时间里面才会显现出作用来的。当然不能忘了火山喷发。火山喷发的时候,会有大量原本在地球深处的二氧化碳进入大气。不过这些现象加在一起,从1750年到现在,对于碳循环所作的贡献, 是平均每年不到1亿吨碳。反对大气增加的二氧化碳主要来自人类活动这个观点的一个常见说法是夸大火山喷发所喷出的二氧化碳的总量,不过从所观测到的火山所喷发的二氧化碳的量,平均下来,并没有这些反对者声称的这么多。这里可以看出大自然的碳循环总量是非常大的,陆地和海洋的两个碳循环,每年交换的碳总量达到1900亿吨碳,折合二氧化碳总量7000亿吨。而大自然中的碳总量更是惊人,达到了41万亿吨碳,折合二氧化碳150万亿吨。人类的活动真的能对这么大量的碳循环造成影响吗?人类在制造二氧化碳这个事情是毋庸置疑的。进入工业时代之后,大量化石能源的使用,人们把几千万年前几亿年前地球存储下来的碳都从地底下挖了出来,烧掉,这些化石燃料的最主要排放形式,就是进入大气。工业时代的人类建造各种建筑、设施所使用的水泥,也需要焚烧大量的石灰岩,也向大气排放二氧化碳。同时,人类对于森林的破坏也日加严重,这样,人们又把几十几百年来大自然所沉积的二氧化碳也用很快的速度释放了出来。不过,人类究竟每年在排放多少二氧化碳呢?这 个问题上,AR4给出的结论是:在最近几十年里,CO2排放持续增加。化石燃料燃烧产生的全球二氧化碳年排放量,从20世纪90年代的平均每年644亿吨碳增加到2000至2005年间的每年723亿吨碳。与土地利用变化相关的CO2排放量估算值,在20世纪90年代平均每年可能排放527亿吨碳,中值为16亿吨碳。2.3, 6.4, 7.3, FAQ 7.1按照AR4引用的数字,在1980年代,人类使用的化石能源与水泥行业排放的二氧化碳,平均在每年54亿吨碳,折合二氧化碳是198亿吨。到了1990年代,这个数字就已经上升到平均每年64亿吨碳,折合二氧化碳235亿吨。AR4所估计的2000-2005年间,平均碳排已经达到每年72亿吨碳,折合二氧化碳264亿吨。人类行为造成的土地改变,主要是森林减少,所排放的二氧化碳数量,估算的误差仍然非常大。比如1980年代的年平均碳排,从4亿吨碳一直到23亿吨碳都 有,AR4采纳的数值是14亿吨碳,比TAR的时候使用的17亿吨要少。1990年代的平均碳排,AR4采纳的数值是16亿吨碳,变化范围在5亿到27亿吨之间。这个情况说明土地改变带来的二氧化碳排放的估算仍然是非常不准确的,这应该是在整个碳循环的估算里面,误差最大的一块。大气究竟增加了多少二氧化碳呢?前面一直在讲浓度的变化,这实际上是体积浓度的变化。质量增加了多少呢?按照AR4里面提供的数据,在1980年代,平均 每年大气中二氧化碳增加了33亿吨碳,在1990年代,平均每年大气中二氧化碳增加32亿吨碳。在2000-2005年,平均每年大气中二氧化碳增加41 亿吨碳。这些数字都是明显小于人类使用化石能源和水泥业所排放的二氧化碳的。如果考虑到人类对土地改变的影响,大气中增加的二氧化碳所占人类行为所排放的二氧化碳还要更低一点。下面这个图左图最上方的黑线,就显示了如果人类使用化石能源和水泥业所排放的二氧化碳都停留在大气里面,大气的浓度每年应该增加多少。实际增加的量,是图下方的柱图,中间的黑线是实际增加量的五年平均。全球二氧化碳浓度的变化1990年代的碳循环现在再来看这个碳循环图。红线是人类活动造成的影响。到1990年代,人类使用化石能源一共排放了2440亿吨碳。与工业化之前的1750年比较,大气中 的二氧化碳总量,已经增加了1650亿吨碳,从5970亿吨增加到7620亿吨,增加幅度是28%,是变化幅度最大的。这方面的数字,来自大气中二氧化碳浓度的变化。海洋呢?浅层海水的碳总量,已经从9000亿吨,增加了180亿吨碳,达到9180亿吨碳,增加了2%,这与大气吸收二氧化碳较慢的速度相符合。浅层海水中的浮游生物由于与大气中的二氧化碳浓度相关性小,与海水中的二氧化碳浓度关系更大一些,所以目前还没有显著影响,保持基本不变。中深层海水 增加了1000亿吨的碳,增加幅度0.3%,与二氧化碳进入这个层次海水的漫长周期相一致。海底沉积物还没观察到显著的碳的变化。陆地呢?陆地上的碳总量估计比较复杂,这个图里面列出的,是由于土地改变,造成了1400亿吨碳的流失,同时因为大气中二氧化碳浓度增加,导致陆地吸收碳的能力增加,而造成了1010亿吨碳的储备增加,两者相减,净值是土地流失了390亿吨碳。这样,人类所增排的这2440亿吨碳里面,有1650亿吨仍然停留在大气中,180 亿吨被浅层海水吸收,1000亿吨被中深层海水吸收,而土地的变化,实际上也减少了390亿吨的碳储存。动态的结论呢?1990年代平均,每年增加二氧化碳排放64亿吨,其中26亿吨被陆地吸收,同时有16亿吨被陆地释放,造成陆地净收支是吸收每年10亿吨 碳。浅层海水则每年增加吸收二氧化碳222亿吨,多释放200亿吨,同时每年增加了16亿吨的碳进入中深层海水。这个比较可以看出,相对地球自身庞大的碳 循环来讲,每一年,人类对于这个循环的贡献还是微不足道的。但是人类工业化已经进行了250年,特别是最近的半个世纪,人类的碳排增加迅速,日积月累下 来,就已经对大自然的碳循环造成了显著的影响。这方面,AR4给出了结论:来自化石燃料使用以及土地利用变化对植物和土壤碳影响所产生的CO2排放是大气CO2增加的主要来源。据估算,自1750年以来,排放到大气中的CO2大约有三分之二来自化石燃料燃烧,三分之一来自土地利用变化。这些CO2大约有45%留存在大气中,30%被海洋吸收,其余的被陆地生物圈吸收。排放到大气中的CO2,大约一半在30年里被清除,30%在几百年里被清除,其余的20%通常将在大气中留存数千年。7.3需要注意的是,这个动态的结果只是一个平均数,不同年间大气中二氧化碳的清除的速率本身差异还是很大的。这里面,主要的变化来自陆地对二氧化碳的吸收能力的变化,植物的生长受气候的影响非常大,所以不同的年份,陆地对大气中二氧化碳的吸收能力变化很大。关于二氧化碳就讲这些,下面讲一下其他的温室气体。IPCC说了什么?(五)其他温室气体by科学松鼠会15 people liked this作者:橡树村温室气体里面,最重要的是二氧化碳,第二重要的就是甲烷。甲烷实际上也是大自然的碳循环的一部分,在陆地上,含有碳的有机物在厌氧条件下分解,最终产物就是甲烷。不过和二氧化碳相比,甲烷的质量在碳循环中要少很多很多。甲烷在大气中的含量也不高。根据冰芯的研究结果,在过去的65万年里面,大气中的甲烷含量也一直有波动,最低的时候是在冰河期,有400ppb,或者说0.4ppm,最高的时候就是在间冰期,或者说不是冰河期的时期,可以达到700ppb,或者说0.7ppm。与大气中二氧化碳数百个ppm相比,大气中甲烷的含量仅有二氧化碳的千分之几。不过这并不表示甲烷的温室效应不重要。实际上,对于同等量的气体,甲烷的温室效应要比二氧化碳高上几十倍。不过甲烷本身并不像二氧化碳那样,需要大自然几百上千年的时间才能消化,甲烷是可以缓慢氧化分解的,最终的产物是水和二氧化碳,这个过程也不算快,需要几十年上百年的时间,不过总是比二氧化碳的清除要快了不少。65万年来大气主要温室气体浓度变化情况最近1万年的时间内,工业化以前,大气中的甲烷含量一直在580-773ppb之间缓慢变化。有两个地方值得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论