高二数学易错点.doc_第1页
高二数学易错点.doc_第2页
高二数学易错点.doc_第3页
高二数学易错点.doc_第4页
高二数学易错点.doc_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高 二 数 学 易 误 点 特 别 提 醒一、简易逻辑1、一个语句是否为命题,关键要看能否判断真假,陈述句、反诘问句都是命题,而祁使句、疑问句、感叹句都不是命题。判断命题的真假要以真值表为依据。原命题与其逆否命题是等价命题 ,逆命题与其否命题是等价命题 ,一真俱真,一假俱假,当一个命题的真假不易判断时,可考虑判断其等价命题的真假。2、判断命题充要条件的三种方法:(1)定义法;(2)利用集合间的包含关系判断,若,则A是B的充分条件或B是A的必要条件;若A=B,则A是B的充要条件;(3)等价法:即利用等价关系判断,对于条件或结论是不等关系(或否定式)的命题,一般运用等价法;如:“”是“”的 条件。(答:充分非必要条件)3、 “p且q”的否定是“非p或非q”;“p或q”的否定是“非p且非q”。4、命题的否定只否定结论;否命题是条件和结论都否定。命题的否定是;否命题是注意:如 “若和都是偶数,则是偶数”的否命题是“若和不都是偶数,则是奇数”否定是“若和都是偶数,则是奇数”二、三角形1、熟知正弦、余弦、正切的和、差、倍公式,正余弦定理,处理三角形内的三角函数问题勿忘三内角和等于1800,一般用正余弦定理实施边角互化;三角形的外接圆直径2R=2、你对三角变换中的几大变换清楚吗?(角的变换:和差、倍角公式;名的变换:切割化弦;次的变换:升、降次公式;形的变换:统一函数形式)。诱导公式记住了吗?(奇变偶不变,符号看象限)。在三角函数中求一个角时,注意考虑两方面了吗?(先求出某个三角函数值,再判定角的范围)。 3、在三角的恒等变形中,要特别注意角的各种变换(如 等)在三角中,你知道1等于什么吗?(这些统称为1的代换)你还记得特殊角的三角函数值吗?()4、你还记得三角化简题的要求是什么吗?项数最少、函数种类最少、分母不含三角函数、且能求出值的式子,一定要算出值来)5、你还记得诱导公式的口诀吗?(奇变偶不变,符号看象限奇偶指什么?怎么看待角所在的象限?)6、你还记得三角化简的通性通法吗?(从函数名、角、运算三方面进行差异分析,常用的技巧有:切化弦、降幂公式、用三角公式转化出现特殊角. 异角化同角,异名化同名,高次化低次)三、数列、1、an= 注意验证a1是否包含在an 的公式中。若不符合要单独列出。一般已知条件中含an与Sn的关系的数列题均可考虑用上述公式;2、你是否注意到在应用等比数列求前n项和时,需要分类讨论(时,;时,)在等比数列中你是否注意了。3、你知道怎样的数列求和时要用“错位相减”法吗?(若,其中是等差数列,是等比数列,求的前n项的和)4、等差数列中an=a1+(n-1)d;Sn=等比数列中an= a1 qn-1;当q=1,Sn=na1 当q1,Sn=5、你还记得裂项求和吗?(如)6、叠加法:,叠乘法:,注意验证a1是否包含在an 的公式中。若不符合要单独列出。7、熟记等差、等比数列的定义,通项公式,前n项和公式,在用等比数列前n项和公式时,勿忘分类讨论思想;如若是等比数列,且,则 (答:1)8、首项正的递减(或首项负的递增)等差数列前n项和最大(或最小)问题,转化为解不等式,或用二次函数处9、你能求一般数列中的最大或最小项吗?如(1)等差数列中,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若是等差数列,首项,则使前n项和成立的最大正整数n是 (答:4006)10、常见数列:an、bn等差则kan+tbn等差;an、bn等比则kan(k0)、anbn、等比;an等差,则(c0)成等比.bn(bn0)等比,则logcbn(c0且c1)等差。11、常用性质:等差数列中, an=am+ (nm)d, ;当m+n=p+q,am+an=ap+aq;等比数列中,an=amqn-m; 当m+n=p+q ,aman=apaq;如(1)在等比数列中,公比q是整数,则=_(答:512);(2)各项均为正数的等比数列中,若,则 (答:10)。12、常见和:13、 等差数列an的任意连续m项的和构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等差数列。等比数列an的任意连续m项的和且不为-1时构成的数列Sm、S2m-Sm、S3m-S2m、S4m - S3m、仍为等比数列。如:公比为-1时,、-、-、不成等比数列14、.等差数列an,项数2n时,S偶-S奇nd;项数2n-1时,S奇-S偶an ; 项数为时,则;项数为奇数时,.15、求和常法:公式、分组、裂项相消、错位相减、倒序相加.关键找通项结构. 分组法求数列的和:如an=2n+3n 、错位相减法求和:如an=(2n-1)2n、裂项法求和:如求和: (答:)、倒序相加法求和: 16、求数列an的最大、最小项的方法(函数思想):an+1-an= 如an= -2n2+29n-3 (an0) 如an= an=f(n) 研究函数f(n)的增减性 如an=17、求通项常法: (1)已知数列的前n项和,求通项,可利用公式:如:数列满足,求(答:)(2)先猜后证(3)递推式为f(n) (采用累加法);f(n) (采用累积法);如已知数列满足,则=_(答:)(4)构造法形如、(为常数)的递推数列如已知,求(答:); (5)涉及递推公式的问题,常借助于“迭代法”解决,适当注意公式的合理运用 an(anan-1)+(an-1an-2)+(a2a1)a1 ; an(6)倒数法形如的递推数列都可以用倒数法求通项。如已知,求(答:);已知数列满足=1,求(答:)四、不等式1、在求不等式(方程)的解集、定义域及值域时,其结果一定要用集合或区间表示;不能用不等式表示你会用补集的思想解决有关问题吗?的取值范围。2、三个二次(一元二次方程,一元二次函数,一元二次不等式)的关系及应用掌握了吗?如何利用二次函数求最值?注意到对二次项系数进行讨论了吗?特别提醒:二次方程 的两个根即为不等式 解集的端点值,也是二次函数 的图像与x轴的交点的横坐标。3、两个不等式相乘时,必须注意同向同正时才能相乘,即同向同正可乘;同时要注意“同号可倒”即 , 若ab0,则。即不等式两边同号时,不等式两边取倒数,不等号方向要改变。如果对不等式两边同时乘以一个代数式,要注意它的正负号,如果正负号未定,要注意分类讨论。4、简单线性规划问题的可行域求作时,要注意不等式表示的区域是相应直线的上方、下方,是否包括边界上的点。利用特殊点进行判断)。B0,Ax+By+C0表示直线斜上侧区域;Ax+By+C0,Ax+By+C0表示直线斜右侧区域;Ax+By+C-1/16 且k 0 12、比较大小的常用方法:(1)作差:作差后通过分解因式、配方等手段判断差的符号得出结果;(2)作商(常用于分数指数幂的代数式);(3)分析法;(4)平方法;(5)分子(或分母)有理化;(6)利用函数的单调性;(7)寻找中间量与“0”比,与“1”比或放缩法 ;(8)图象法。其中比较法(作差、作商)是最基本的方法。如(1)设,比较的大小(答:当时,(时取等号);当时,(时取等号);(2)设,试比较的大小(答:)13、常用不等式:若,(1)(当且仅当时取等号) ;(2)a、b、cR,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。|a|a;|a|a14、研究函数问题牢记“定义域优先法”了吗?研究函数问题准备好“数形结合”这个工具了吗?15、证法:比较法:差比:作差-变形(分解或通分配方)-定号.另:商比综合法-由因导果;分析法-执果索因;反证法-正难则反。放缩法方法有:添加或舍去一些项,如:;换元法:常用的换元有三角换元和代数换元。如:已知,可设;最值法,如:afmax(x),则af(x)恒成立.16、求值域方法: 配方法:如:求函数的值域(答:4,8)逆求法(反求法):如:通过反解,用来表示,再由的取值范围,通过解不等式,得出的取值范围(答:(0,1);换元法:如(1)的值域为_(答:);(2)的值域为_(答:)(令,。运用换元法时,要特别要注意新元的范围);三角有界法:转化为只含正弦、余弦的函数,运用三角函数有界性来求。如:的值域不等式法利用基本不等式求函数的最值。如设成等差数列,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论